f,-_—_.._-._ E——— " a % = o= e = T == A ===
40 ; : 4 ek 4, B0 5. s
Pwlw 'mlnenga R .0ns i .Bes 2 .Bns 3 .Bns
. DTN = 7 q)
5 p(3) = u(5) (T u(9)
7 Time

SPICE

A Guide to Circuit
Simulation and Analysis
Using PSpicee
A\ '3-"0 h,'
oy 1
31“3

SPICE

A Guide to Circuit
Simulation and Analysis
Using PSpices

PAUL W. TUINENGA

MicroSim Corporation

I

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Contents

PREFACE Xiif

INTRODUCTION xv

What Is PSpice? xv
Other SPICE-based Programs xvii

Organization of This Book xviii
1 GETTING STARTED 7
1.1 A Small Circuit 1
1.2 Component Values 4

2 DC OPERATION 6

2.1 Passive Devices 6
2.2 Component Names 7
2.3 Independent Sources 8
2.4 Ohm’s Law 9

vii

viii

25
2.6
2.7

Kirchhoff’s Network Laws 9
Capacitors in DC Circuits 11
Inductors in DC Circuits 12

3 DC SENSITIVITY

3.1 The .SENS Statement 14

3.2 DC Sensitivity Analysis 14

33 Circuit Example: Worét-Case Design 16
4 DC SWEEP

4.1 Sweeping a Source 19

4.2 The .DC Statement 20

43 Printed Output 20

4.4 Plotted Output 22

4.5 Linear Controlled Sources 22

4.6 Polynomial Controlled Sources 24

4.7 Graphics Output 26

4.8 Multiple-Input Controlled Sources 27

4.9 Function Modules 28

4.10 Subcircuits 31

5 TRANSFER FUNCTION

5.1
52
53
5.4
55
5.6
5.7
5.8

Small-Signal DC Analysis 33
Circuit Gain 34

Input and Output Resistance 34
The . TF Statement 35

Transfer Function Analysis 35
Linear Example 37

Nonlinear Example 38

Plotting Small-Signal Gain 40

Contents

14

79

33

Contents ix
6 FREQUENCY RESPONSE 42
6.1 Specifying Input Sources 43
6.2 The .AC Statement 44
6.3 PRINT and PLOT Qutput 44
6.4 Graphics: Bode Plots 45
6.5 Plotting Group Delay 48
6.6 Complex Values 49
6.7 Plotting Input Impedance 51
6.8 Plotting Output Impedance 55
6.9 Plotting Loop Gain 59
7 FEEDBACK CONTROL ANALYSIS 66
7.1 Dynamic Plant Example 66
7.2 Bode Plots 68
7.3 Inverse-Polar Plots 72
7.4 Nichols Plots 74
8 NOISE ANALYSIS 76
8.1 Noise Calculations 76 .
8.2 The .NOISE Statement 77
8.3 PRINT and PLOT Output 78
8.4 Graphics Output 78
8.5 Calculating Total Noise and S/N 81
8.6 Inserting Noise Sources 82 '
9 TRANSIENT RESPONSE 85
9.1 Simulating Time 85
9.2 Specifying Input Sources 86.

x Contents
9.3 The .TRAN Statement 92
9.4 PRINT and PLOT Output 93
9.5 Graphics Output and Calculations 93
9.6 Setting Initial Conditions 96
9.7 Hazards: Problems of Time-stepped Solutions 98
9.8 Benefits: Transient Solutions for Static Problems 99
9.9 Unusual Waveform Sources 101
10 DISTORTION AND SPECTRAL ANALYSIS 103
10.1 The .DISTO Analysis 103
10.2 Harmonic (Fourier) Decomposition 104
10.3 The .FOUR Statement 105
10.4 Large-Signal Distortion 106
10.5 Harmonic Recomposition 108
10.6 Fourier Transform 109
10.7 Intermodulation Distortion 114
11 DEVICE MODELS 178
11.1 The .MODEL Statement 118
11.2 Models for Passive Devices 119
11.3 Scaling Component Values 120
11.4 Sweeping Component Values 122
11.5 Temperature Analysis 122
11.6 Sweeping Temperature 123
12 ACTIVE DEVICES 124
12.1 Active Device Models 124
12.2 Semiconductor Diode 126

Contents

12.3 Junction Field-Effect Transistor (JFET) 131
12.4 Gallium-Arsenide MESFET (GaAsFET) 134
12.5 Bipolar Junction Transistor (BJT) 137

12.6 MOS Field-Effect Transistor (MOSFET) 143
12.7 Nonlinear Magnetics 148

12.8 References 151

APPENDIX A

APPENDIX B

APPENDIX C
APPENDIX D

INDEX 193

ABRIDGED SUMMARY OF PSPICE
STATEMENTS 153

ABRIDGED SUMMARY OF PSPICE
DEVICES 169

HOW PSPICE WORKS 187

/

VOLTAGE-CONTROLLED COMPONENTS

189

xi

Preface

SPICE, from the University of California, at Berkeley, is the de facto world standard
for analog circuit simulation. PSpice®, from MicroSim Corporation, is one of the
many commercial derivatives of SPICE, and the first to be available on the IBM®
personal computer. PSpice quickly became popular, and our customers found that
there are no ‘‘how to’’ references for using SPICE, or its derivatives, the way
there are references for database, spreadsheet, and word processing programs. This
book’s goal is to help users of PSpice, and many other SPICE-derived simulators,
to access and use the features of the simulator for their work. Many of these features
are only hinted at in other references, notes, or advice from other users, which are
the traditional means of help you get for SPICE.

Beyond the syntax and semantics of the SPICE-standard input file, this book
also demonstrates the use of PSpice for electrical engineering applications. There
is a lot you can do with a circuit simulator that corresponds to what you might do
on the lab-bench, as well as simulated measurements that go beyond what is possible
with lab equipment.

The background required for using PSpice includes the following:

This book assumes that you have a passing acquaintance with electrical or
electronic circuits. This may come from formal study of basic electronic compo-
nents (for instance, do you know what resistors and capacitors are, and how
they react to electrical stimulation) and network analysis (for instance, do
you recall Kirchhoff’s laws). Or perhaps you picked up a working knowledge
from your job, or as a hobby. If you have a circuit whose operation you
basically understand, and you want to simulate this circuit to check the details
of operation, you probably know enough to understand PSpice.

xiii

xiv Preface

This book also assumes that you are able to operate the computer that will
run the simulator, as well as create the input for the simulator. Perhaps a
friend, or another kind person, will help you with this.

Many people made this book possible. Foremost, 1 thank my family for their
patience while my preoccupation with this book kept me away from them. Also, |
thank the people at MicroSim for their encouragement. Finally, I thank the users
of PSpice whose many questions made the need for this book so obvious.

Paul W. Tuinenga

ADDITIONAL ITEMS AVAILABLE

PSpice is available for the IBM-compatible personal computers, including the newer
PS/2 series. PSpice is also available for workstations, minicomputers, and mainframes.
Check with MicroSim for product availability. This book and the Student Version
PSpice software are available in several formats:

1. A paperback edition with software included in the book (834614).
2. A paperback edition which does not include the software (834606).

3. The software is available separately in quantity from Prentice-Hall in an IBM®
PC-compatible version (834630) a Macintosh II® compatible version
(834622), and an IBM PS/2 compatible version (834648).

To order the software separately in quantity, please see the order card which is
included in this book.

Introduction

PSpice helps you simulate your electrical circuit designs before you build them.
This lets you decide if changes are needed, without touching any hardware. PSpice
also helps you check your design after you think it is complete. This lets you
decide if the circuit will work correctly outside your office, in the real world, and
have good production yield. In short, PSpice is a simulated ‘‘lab bench’> on which
you create test circuits and make measurements (PSpice will not design the circuit
for you).

The practical way to check an electrical circuit is to build it. However, by
the early 1970s, the components which were connected on an integrated circuit had
become much smaller than individual discrete components. Physical effects that
were negligible for normal circuits, such as a stereo amplifier, became important
for these microcircuits. So the circuits could not be assembled from components in
the lab and give the correct test results; the circuit had to be either (i) physically
built, which is expensive and time consuming, or (ii) carefully simulated using a
computer program. This is why the acronym, SPICE, stands for Simulation Program
with Integrated Circuit Emphasis.

WHAT IS PSPICE?

PSpice is a member of the SPICE ‘‘family’’ of circuit simulators, all of which
derive from the SPICE2 circuit simulator developed at the University of California,
Berkeley, during the mid-1970s. SPICE2 evolved from the original SPICE program,
which, as it turns out, evolved from another simulator called CANCER that was

Xv

xvi Introduction

developed in the early 1970s. Tremendous effort over this relatively short time
created a simulator whose algorithms are robust, powerful, and general; SPICE2
quickly became an industry standard tool. Since this development was supported
using public funds the software is “‘in the public domain,”” which means it may be
freely used by U.S. citizens. The software is improved by U.C. Berkeley to the
extent that it supports further research work. For example, SPICE3 is a *‘redesigned’’
implementation of the SPICE2 program that fits into U.C. Berkeley’s computer-
aided design (CAD) research program. SPICE3 is not better than SPICE2, in the
way that SPICE2 was an advance over the original SPICE program; rather, it is
designed to be a module in the U.C. Berkeley CAD research system. Neither SPICE2
nor SPICE3 is supported by U.C. Berkeley in the way commercial products are,
nor does U.C. Berkeley provide consulting services. This led to commercial versions
of SPICE which have the kind of support industrial customers require. Also, many
companies have an in-house version of SPICE that has modifications to suit particular
needs.

PSpice, which uses the same algorithms as SPICE2 (and conforms to its input
syntax), shares this emphasis on microcircuit technology. However, the electrical
concepts are general and are useful for all sizes of circuits (for example, power
generation grids) and a wide range of applications. For instance, the simulator has
no concept of large or small circuits; microvolts or megavolts are ‘‘just numbers’’
to PSpice. As long as PSpice is able to solve your circuit matrix, it will do so.
This makes PSpice ‘‘technology independent” and generally useful. On the other
hand, no assumptions are made about how the circuit should behave; for example,
PSpice is not concerned that 0.03-watts output power does not make for a very
loud stereo amplifier. You have to look at the results to see if they make sense in
your application.

For discrete circuits (circuits made of individual parts assembled on a circuit
board) PSpice has a variety of uses. Like the integrated circuit designs mentioned
before, your designs are pressed for schedule time, budget expense, and manufac-
turing yield. With PSpice you can

.Check a circuit idea before building a breadboard (even before ordering the
parts). '

Try out ideal, or ‘‘blue sky,’
limiting effects in your design.

>

operation by using ideal components to isolate

Make simulated test measurements which are

» difficult (due to electrical noise or circuit loading),

* inconvenient (special test equipment is unavailable), or

» unwise (the test circuit would destroy itself).

Simulate a circuit many times with component variations to check what percent-

age will pass ‘‘final test,”’ and find which combinations give the ‘‘worst case’”
results.

Introduction xvii

Once you become familiar with PSpice, you will find that it can substitute for
most (but not all) of your breadboard work. Like any new tool, experience is required
to get the most benefit from it.

The PSpice control statements (or ‘‘language,”’ if you prefer) are easy to
learn and use. These statements, which are collected in the file which is read by
the simulator (the file is called a ‘‘circuit file’’), are usually self-contained and
may be understood without referring to any other statements. Moreover, each statement
has so little interaction with other statements that they have the same meaning
regardless of context. So the language of PSpice is easy to learn because you can
focus on each statement type, master it, then move on to the next. Also, as you
will see, you will not need to know many statement types to get started. Most of
your difficulty will probably come from learning and operating your computer system.

OTHER SPICE-BASED PROGRAMS

The commercially supported versions of SPICE2 fall into three groups:

The original group of mainframe-based versions, including HSPICE from Meta-
Software, IG-SPICE from A.B. Associates, and I-SPICE from NCSS timeshar-
ing. HSPICE focuses on the needs of the integrated circuit designer with
special device model support; Meta-Software also distributes RAD-SPICE
which, as you might guess, simulates the operation of circuits subjected to
jonizing radiation. I-SPICE and IG-SPICE focus on *‘interactive’’ circuit simula-
tion and graphics output (which was an innovation for mainframe users). Precise
from Electronic Engineering Software is a more recent addition to this group.

The IBM-PC based programs (besides PSpice), including AllSpice from Aco-
tech, IS-SPICE from Intusoft, and Z-SPICE from Z-Tech. These are very
similar to SPICE2; in most cases no changes have been made—even to correct
errors (such as convergence problems). Without serious support for the simula-
tor, these programs fall into a more ‘‘hobbyist’” class of product. However,
interesting additions include pre-processors or shell programs to manage input
and provide ‘‘interactive’” control, as well as post-processors for refining the
normal SPICE output.

Advanced programs, with ‘‘innards’ that are significantly overhauled, or en-
tirely new, but adhering to the U.C. Berkeley standards for circuit description,
including SPICE-Plus from Analog Design Tools, DSPICE from Daisy Systems,
and PSpice from MicroSim. Many additions and improvements are available
from these products. Also, these advanced simulators have options to extend
simulation capabilities and interpret results.

The ‘‘growth’” portion of the analog circuit simulation business is the last group,
especially with the rapidly expanding market for engineering workstations. While
U.C. Berkeley remains at the forefront of computer-aided tools for engineering, as

xviii Introduction

a practical matter the complete simulation products will come from industry. Most,
if not all, of the techniques you will see in this text are applicable to these products.

ORGANIZATION OF THIS BOOK

This book adopts a *‘graduated example’” (which some call a *‘tutorial”’) approach
to learning about circuit simulation. It is tempting to load new software and try
some examples, well before reading the instructions, so we will channel this urge
toward learning about the simulator. We will start by building a simple circuit,
make some DC ‘‘measurements,”’ and move on. The biggest hurdle seems to be
running a simulator the first few times. After that you start to focus on the electronics
you are simulating and how best to measure what you want to discover.

The details of the semiconductor models are described later. These models
are independent of the methods for using the simulator. In fact, we will do without
them entirely in the examples.

An abridged summary of the control statements and device descriptions are
at the end of the book. In fact, these appear as appendices because this information
is not the raison d’étre of the book, and is applicable to the SPICE-like simulators
in only a general sense. You should try to obtain a detailed guide to the simulator
you will be using.

Not ‘‘everything you ever wanted to know about SPICE . . .”’ is in this
book. Missing are some topics that I had planned to include, as well as additional
depth of coverage of the topics that do appear. These fell victim to the schedule
for completing the text. Additional topics, without doubt, will become obvious
from reader comments. Perhaps in the next edition. . . .

29

SPICE

A Guide to Circuit
Simulation and Analysis
Using PSpices

CHAPTER 1

Getting Started

Let us begin with a quick circuit to introduce you to running PSpice. This will
show you the basics of a circuit simulation without getting complicated by rules,
details, exceptions, and so on, and quickly get to a successful result. Later, we
will get to the wide range of features and ways of combining these to express
complex circuit functions. .

Sometimes the examples will omit features of the simulator intentionally to
concentrate on a particular topic. These features are necessary for normal use, and
we will get to them in due course. The examples are brief, to demonstrate an idea
and there is the danger that, in not explaining somewhat unrelated items, they may
mislead you. If this happens it was not intended, but is just a problem with this
approach.

Sometimes the examples will repeat some of what was done already.

1.1 A SMALL CIRCUIT

The best way to learn a circuit simulator is to ‘““do’” simulations. Usually you start
with a small circuit that you know, by inspection, will work.

Running this simulation requires several basic accomplishments. It requires
that you (i) create the input file, or ‘‘circuit file’’ (although some call it a ‘‘program’’
for the simulator), (ii) run the simulator (without errors), (iii) find where the output
went, and (iv) inspect the output.

2 Getting Started Chap. 1

R1
1Q

é R2
2Q

Figure 1.1 Schematic for small-circuit
example.

©
L

In PSpice, the circuit file to simulate this circuit is

* Resistor divider circuit
VIN 1 0 3.0volt

Rl 3 @2 L.0ohm

Re ¢ 0 2.0ohm

.END

How you run this simulation will depend on the system you are using. You will
need to learn to use a text editor to create the input file. Then you will run PSpice,
specifying the input file you created. If everything works, PSpice will read your
input file called, for example, TEST.CIR, and place the results in an output file
called TEST.OUT. The same text editor you used for creating the input file can
also be used to inspect the output file. This output file may also be directed, by
you, to a printer.

Exercise 1.1.1

Create and run this simulation on your system. Look at the output file. Did the printout
show (correctly) node 2’s voltage as 2 volts? Experiment by changing the circuit
file—leave out, or add, something and see what errors PSpice will check.

Now to describe, and explain the circuit file. PSpice always expects the first line
of the circuit file to be a title line. You can leave it blank, but circuit description
can not start until the second line of the file. The examples in this book will sometimes
start the title line with a ***>’ (which also indicates a comment line) by force of
habit on my part. This is not necessary. What is necessary is the last line, ‘. END’’,
which completes the description of the entire circuit including any simulation controls.
You use *“.END”’ because PSpice will let you start another, completely different,
circuit simulation right after ‘. END’’. Between the first and last line, the circuit
file may be in almost any order.

Sec. 1.1 A Small Circuit 3

All of the circuit elements, or devices, in the circuit file are connected (in
the sense that you would solder their leads together) by circuit nodes. You may
think of these nodes as the connecting wires, or lines, in a circuit schematic. In
SPICE?2 these nodes are positive integers, including O (zero) which is reserved to
mean ‘‘ground.” PSpice does not require that you use integers (any text string
will do), but O is still ‘“ground.’” Every circuit file must have a ground node, as a
reference, and every other node in the circuit file must have a DC current path to
ground. This is one of the requirements of the SPICE algorithms.

Along with requiring a ground node, PSpice also requires that all terminals
be connected to at least one other terminal. This is a precaution against dangling
wires. Even though you may do this on the lab-bench, it is considered an error by
the simulator. |

The circuit file for our example uses only two-terminal devices—a voltage
source and the resistors. A separate line is used to describe each element in the
circuit. The basic syntax is

<name> <node> <node> . . . <value>

There are no one-terminal devices in PSpice. Devices with more than two terminals
use basically the same form, but with more node items. The device ‘‘value’’ is a
number, either decimal or floating point, that describes the size of the device. You
will see later that there are a variety of ways to express the same value, including
a metric suffix. After the value you may include a unit, such as ‘‘volt’” or ‘‘ohm,”
for your own use; PSpice actually ignores these (to the extent that they aren’t confused
with one of the metric suffixes).

Any line may be a comment line by starting it with a in the first column.
This allows you to document your circuit file for others, unfamiliar with the circuit
file, or for yourself when, after some time, you too will be unfamiliar with the

circuit file. Blank lines are ignored; use them to separate sections of your circuit
file.

X3

PSpice also allows you to insert comments on any line by starting the comment

XIS

with a **;”” (semicolon). Everything on the line after the **;”’ is ignored; for example:

Rbias 2 3 45 ; this is the biasing device and had better not fail!

Exercise 1.1.2

Modify the previous exercise’s circuit file by swapping any of the lines (except the
first or last line). See if PSpice gives different results.

Exercise 1.1.3

Try adding some comment lines and blank lines to the previous exercise’s circuit
file. Then, try changing all of the 0 nodes to 3 (so there is no ‘‘ground’’) and see
what happens. Then, try disconnecting R1 and R2 by adding a new node to the circuit
file and see what errors result.

4 Getting Started Chap. 1

Take a look at the output file of our example. As it turns out, this example did not
specify any type of simulation, such as frequency response, however PSpice assumes
that at least you wanted a DC bias-point to be calculated. This is a calculation of
what voltages the nodes would have if the circuit is quiescent, which also means
the currents through the devices are calculated. These are printed in your output
file. In addition, PSpice checks all of the devices which supply current to the circuit
and totals the quiescent power dissipated by the circuit.

1.2 COMPONENT VALUES

All of the quantities, or values, in PSpice may be expressed as decimal or floating
point values traditionally used by computer programs. The decimal numbers should
be familiar; for example: '

1 3.14 -13.7 .0045

Floating point values scale a decimal number by a power of ten, where the letter
“E” (for ‘“‘exponent’’) separates the decimal number from the start of the integer
exponent, so that

.0045 can be written 4.5E-3 which means 4.5%1073

Older SPICE versions also allow you to use ‘D’ instead of “‘E.”” This is a holdover
from the FORTRAN programming language where ‘‘D’’ meant that the number
was stored with greater precision (‘‘double’’ precision). PSpice will also accept
the *‘D” format, but the storage precision is selected depending on the needs of
the simulator.

Also, PSpice lets you use a metric-like suffix to express a value. These suffixes
multiply the number they follow by a power of ten (with one exception). Using
the suffix notation allows values written into the circuit file to look like the values
on a circuit schematic. This is a great convenience that removes a source for most
simulation errors: using the wrong component values.

These are the power-of-ten suffix letters, along with the metric prefixes and
scale factors they represent, used by PSpice:

F femto 1071
P pico 10712
N nano 1077
U micro 1076
M milli 1073
K kilo 103
MEG mega 10*¢
G giga 10*°
T tera 10112

plus this suffix (for English-to-metric conversion of integrated circuit device sizes):
MIL 25.4-107°

Sec. 1.1 A Small Circuit 5

Using the exponential and suffix notation lets you express the same value many
ways; for example:

1050000 1.05E6 1.0SMEG 1.05E3K .00105G

are all the same value to PSpice.

The previous list of suffixes was written in capital letters because the original
SPICE simulators allowed only capital letters in the circuit file. One problem with
this is the confusion between the standard use of ‘‘m’’ for “‘milli-> and ‘M’ for
‘‘mega-,”’ which was resolved by requiring the input to be ‘“‘MEG’’ for ‘‘mega-.”’
To maintain compatibility PSpice still requires that you use ‘“MEG’’ (or ‘‘meg’’)
for ‘‘mega-.”’

Other letters (those that are not suffixes) may be used with a number, but
these are ignored by PSpice. That is why you may write ‘‘10,” or ‘““10volts,”’ or
*“‘10ohms,”’ to make your circuit file more readable without changing the meaning
of the value. Moreover, once a valid suffix is read by PSpice, the remaining letters
are ignored. You may also write ‘‘10pF,”’ or *‘10picoamps,’” or ‘‘10picoseconds,”’

“and these will all be the value ‘‘10E-9.”’

CHAPTER 2

DC Operation

In the previous chapter PSpice calculated the DC bias-point for the circuits you
entered. PSpice must do this before proceeding to any other type of analysis, since
it must determine the operating point of the circuit (the voltages at each node and
currents through each device). If you were to physically build a circuit and attach
a power supply to it, when you start the supply the circuit will bias itself at its DC
operating point. For most circuits this is a stable condition, without oscillation,
and PSpice will arrive at a DC solution to the circuit. Later we will cover more
stubborn circuits. These circuits work on the lab-bench, but PSpice will need help
to calculate the DC bias-point.

While PSpice always calculates a bias-point before proceeding, it will not
print out the results of this calculation unless (i) there are no other types of analyses
specified, or (ii) you include a .OP statement in your circuit file. Even if you want
only the DC bias information it is helpful to include the .OP statement to remind
you later that the DC bias information was what you were after in the circuit. In a
sense, .OP is one of the analyses that PSpice will perform on your circuits.

Using just the DC bias-point analysis, we can demonstrate some electrical
laws that PSpice follows in calculating voltages and currents. But first, let us learn
more about the basic components for building circuits.

2.1 PASSIVE DEVICES

The passive devices are resistors, capacitors, and inductors:

Resistors limit (resist) the flow of electrical current, following the law V =
I'R, where V is the voltage (in volts) across the resistor, [is the current (in
amperes) through the resistor, and R is the resistance value (in ohms).

Sec. 2.2 Component Names 7

Capacitors store energy in an electrostatic field, following the law Q@ = V-C,
where (is the induced charge (in coulombs) on the ‘‘plates’” of the capacitor,
V is the voltage (in volts) impressed on the ‘‘plates,”” and C is the capacitance
value (in farads).

Inductors store energy in an electromagnetic field, following the law A =
I-L, where X is the induced magnetic flux (in Weber-turns) around the inductor,
I is the current (in amperes) through the inductor, and L is the self-inductance
value (in henries).

Fortunately, most of the Rs, Ls, and Cs we use on the lab-bench are nearly ideal
and for our purposes we can consider them to be ideal. In PSpice we can specify

these devices merely by using the appropriate letter as the first letter of the device
name:

Rxx for resistor
Lxx for inductor
Cxx for capacitor

and the xx represents any other letters or numbers you want to use to finish the
“‘name’’ of the device.

To specify the device in the circuit file we include the name of the device,
how it is connected into the circuit, and its value. PSpice uses the basic electrical
units for voltage (volts) and current '(amps) and also uses the basic electrical units
for device values: ohms, farads, and henries.

Here are some example devices:

R12 52 15K is a 15-kilohm resistor (15,000 ohm)
C2 123 1.8u is a 1.8-microfarad capacitor (0.0000018 rarad)
L3 7 6 10m is a 10-millihenry inductor (0.01 henry)

2.2 COMPONENT NAMES

As you just saw above, the names for devices started with an alphabetic letter
reserved for that device. It is the first letter that tells PSpice what kind of device
you are about to describe. These letters correspond to the standard ones used on
circuit schematic diagrams for labeling devices. For instance, if you used ‘‘R17”’
as the label of a resistor in a schematic then you would probably use “R17"" in
your circuit file as the name of that resistor. The remaining letters of the component
name may be alphabetic, or numbers, or (in PSpice) an underscore “__” or dollar
sign “$” character. Upper- or lower-case letters may be used, but PSpice is not
sensitive to which case is used, so that

RBIAS
Rbias
rbiaS

8 DC Operation Chap. 2

all refer to the same device. The maximum length possible for component names
is longer than 80 characters. Practically, the length of the name you use for a
component depends on how much typing you want to do.

Older SPICE versions, due to limitations of the computer language they were
written in, as well as the need to conserve memory on the (then) current generation
of machines (when ‘‘core’’ memory referred to the tiny, hand-strung, magnetic
rings which stored only one bit), limited component names to eight characters. Of
course, the first character specified the component type, so there were only seven
characters left for making the name unique and identifiable.

Some of the statements in SPICE can be detailed and long, especially in
PSpice where you are allowed to have long names for devices and nodes. As a
convenience you may split a line, wherever you could normally use a space character,
and continue on the next line. However, the first character on the continuation line
must be a ““+”’ to indicate that it is a continuation line; for example:

ResistorWithLongName ConnectedToOneNode AndToAnotherNode
+120ohns

2.3 INDEPENDENT SOURCES

To simulate your circuits you will also need some way to tell PSpice what is *‘exciting’’
or supplying electrical power to the circuit. For this we use independent sources
which supply a fixed voltage level or current flow. We specify these sources in a
way that is similar to the passive devices described earlier: name, connecting nodes,
value. As you might have guessed

Vxx is a voltage source, and
Ixx is a current source

Remember, PSpice uses the basic electrical units for values; so the following examples
are easy to understand:

VIN301.2K is a 1.2-kilovolt source (1,200 volts)
14122 15m is a 15-milliamp source (0.015 amps)

A voltage source is like a battery, or lab-bench power supply. Current flows (using
the positive current convention) out from the positive terminal (first node), through
the circuit, and then into the negative terminal (second node). This is the conventional
current flow taught to students. But why, in our first example, did PSpice calculate
the supply current as a negative value? Because whenever you ask PSpice to print
the value of a current through a device, ‘‘through>’ means into the first terminal
and out the second terminal. In this case the current was flowing out of the positive
(first) terminal, so the current has a negative value.

A current source provides a fixed value of current to the circuit. However,

Sec. 2.5 Kirchhoff's Network Laws 9

its current flows (again using positive current) into the positive terminal (first node),
through the source, and then out of the negative terminal (second node). This is
the opposite direction of the voltage source, but is consistent with reporting the
current through the device. Also, current flows from the more positive potential to
the more negative potential—in this case through the current source device.

Exercise 2.3.1

Using the circuit from the first exercise, replace the voltage source VIN with a current
source of value 1 amp. How did the output from PSpice change?

2.4 OHM'S LAW
PSpice calculates values according to many laws of physics including Ohm’s law,
which we have seen already. The output from your first exercise showed the current
flowing through the resistors and the voltages across each. Take a moment to check
that Ohm’s law was followed for each resistor.

2.5 KIRCHHOFF'S NETWORK LAWS

Consider the circuit in Figure 2.1,

R3 R4
10 2Q

Figure 2.1 Schematic for resistor bridge circuit.

10 DC Operation Chap. 2

with the equivalent circuit file:

Resistor bridge

VIN 1 0 10
R} 1 ¢ 2
RZ 1 31
R3 201
R4 3 0282
RS 3ece
.End

After you run PSpice on this circuit, add up the voltage drops around any of the
loops in the resistor network. For example, the loop of resistors R2, RS, and R1,
have voltage drops (going clockwise) of 4 volts, 2 volts, and —6 volts. The sum
of these voltages is always zero, which demonstrates one of Kirchhoff’s network
laws: the algebraic sum of the potential drops around any closed loop in a network
of conductors is always zero.

Exercise 2.5.1
Sum the voltage drops around these loops: R3+R5+R4 and R1+R2+R3+R4.

Now we are going to try something a little different. Earlier we saw that PSpice
outputs the current through the voltage source. If we use a voltage source with a
value of 0 volts, we can insert this into the circuit and measure (like an ammeter)
currents flowing through the circuit. Let us change the circuit to measure some
currents, as in Figure 2.2,

Figure 2.2 Schematic for resistor bridge circuit, including zero-volt sources|

Sec. 2.6 Capacitors in DC Circuits 1

with the equivalent circuit file:

Resistor bridge

VIN 2 0 10
RL 1 21 ¢2
Vi 21 2 0
Re 1 31
vl 2 22 0
Rl 2201
R4 3 D02
RS 3 23 ¢
Vs 23 2 0
.END

After you run PSpice on this circuit, add up the currents for V1, V3, and V5.
These turn out to be zero, which demonstrates one of Kirchhoff’s network laws:
the algebraic sum of the currents coming into any junction in the network is always
Zero.

Exercise 2.5.2

Change the polarity of one of the zero-volt sources and see how the output from
PSpice changes. Does Kirchhoff’s law still hold? Now, try inserting zero-volt sources
around node 3 and check the output from PSpice.

2.6 CAPACITORS IN DC CIRCUITS

Capacitors block sustained, or DC, current. The only time current flows through
the capacitor is when charge is collecting on, or being removed from, the *‘plates.”
This means that the voltage across the capacitor is changing, which is not the DC
case. Of course in a real circuit, once the power is supplied, there is a transient
during which some capacitors will charge up to their final values. But the result is
the same as if these capacitors did not exist and the connections to each capacitor
were left dangling. Inside PSpice, this is exactly how capacitors are treated for DC
calculations.

Since the capacitors in PSpice are perfect (that is, without any leakage) it is
important that there are no sections of your circuit that become isolated by ‘‘ignoring’’
the capacitors. This means that every node of your circuit needs to have some path for
DC current, however convoluted, to ground so that bias levels may be determined for
every node. If you have a circuit with a node that is isolated by perfect capacitors,
for example, node 1 in the following circuit fragment:

C1 1 0 1pF
C2 1 2 1pF
V1 2 0 3volts

12 DC Operation Chap. 2

then there is no way, in theory, to determine the DC level of this node. In a real
circuit, leakages in the dielectric of the capacitor would prevent such node from
attaining a zillion volts. ‘

PSpice checks for isolated nodes before starting any simulations. If you acciden-
tally isolate a node you will receive an error message similar to

No DC path to node

to indicate this problem. This simulation cannot proceed until this is corrected.

- For the example just shown, you would want to connect a large-value resistor,
say 1-gigaohm, to the isolated node. The other end of the resistor would be connected
to ground, or whatever voltage level you wanted to use as the bias level.

Exercise 2.6.1
Insert a capacitor into one of the “legs” of the resistor bridge circuit (see earlier

exercises). Run PSpice and note how the bias level changes. Try different “legs” of the
bridge and check that the results were as you expected.

Exercise 2.6.2

By inserting two capacitors, isolate a resistor-in one of the ‘‘legs’” of the resistor
bridge circuit (see earlier exercises). Run PSpice and find the error message caused
by this situation.

2.7 INDUCTORS IN DC CIRCUITS

Inductors, which are essentially coils of wire, conduct DC current so they do not
have the same restrictions as capacitors (previously discussed). However, they have
a different restriction (of course, there’s always a catch!) because of how inductors
are simulated when the analyses includes time, such as AC response or transient
simulation. In these cases the inductor develops a voltage across its winding in
response to the changing magnetic flux within the windings. The total voltage devel-
oped is the sum of (i) flux changes due to current in the winding itself, and (ii)
flux changes due to current in any other winding whose magnetic field is coupled
to the winding in question. The reciprocal ratio of the change in current to the
developed voltage is called, for these two cases, ‘‘self inductance’” and *‘mutual
inductance,’’ respectively.

These voltages which are developed by flux changes are modeled, in PSpice,
as time varying voltage sources. So far this is not a problem, except when you try
to connect an inductor directly across a voltage source, even if the voltage source’s
value is zero. This situation is called a ‘‘voltage loop’” which, as it sounds, means
a circular path of voltage sources without any intervening resistance to limit the
current to a finite value. To strictly check for all voltage loops, PSpice treats inductors
as though they were voltage sources. For the DC case they are ‘‘shorts’’ or zero-

Sec. 2.7 Inductors in DC Circuits 13

volt sources, and for a time-related case they may be non-zero sources at some
instant.

Furthermore, you may not connect two inductors in parallel. For the same,
strict reason, each inductor is considered to be a voltage source so the parallel
connection of two, or more, forms a ‘‘voltage loop.”” You may circumvent this
restriction by including a series resistor with each inductor to *‘break’” the loop.
This may be a resistor of negligible value, say 0.001 ohm, or one which accounts
for the winding resistance (the DC resistance of the coiled wire) in which case it
will have the same resistance value as the winding.

Exercise 2.7.1

Insert an inductor into one of the ‘“‘legs’” of the resistor bridge circuit (see earlier
exercises). Run PSpice and note if the bias levels change. Try different ‘‘legs’ of
the bridge and check that the results were as you expected.

Exercise 2.7.2

By inserting two inductors in parallel, create a voltage loop in one of the “‘legs’” of
the resistor bridge circuit (see earlier exercises). Run PSpice and find the error message
caused by this situation.

CHAPTER 3

DC Sensitivity

Simulators are generally used either to verify a design, or to refine (improve) a
design. Verifying is simply checking that the design ‘‘meets spec.>” However, refining
the design may make it more robust, attain a ‘‘tighter spec,”” or even make it less
expensive to produce. DC sensitivity calculations help guide the user to those compo-
nents which affect a circuit’s DC bias-point the most. This then will focus efforts
on reducing the sensitivity of the circuit to component variations and/or drift, or it
may provide evidence that a design is too conservative and that less expensive
components, with more variation and/or drift, may be used.

3.1 THE .SENS STATEMENT

The ‘*.SENS’’ staterent specifies which DC outputs you want to consider (PSpice
doesn’t know how your circuit is being used). Then, once the DC bias-point for
the circuit is calculated, PSpice calculates the sensitivity of each output, individually,
to all of the device values (as well as ‘‘model parameters,”” which we will cover
in due course) in the circuit. The format for the statement is

.SENS <output value> . . .

The <output value> is in the same format as for the .PRINT statement (see section
4.3, page 20).

3.2 DC SENSITIVITY ANALYSIS
Having a .SENS statement in your circuit file causes the DC sensitivity calculations

to be done when the DC bias-point calculations are completed. You do not need to
specify any other output to get the results of the DC sensitivity analysis. We can

14

Sec. 3.2 DC Sensitivity Analysis 15

now try working some examples to see what .SENS will do. Usually you will be
using .SENS to analyze a more complicated, active device circuit, such as a transistor
amplifier. However, for ease of understanding we can demonstrate the use of .SENS
with a small demonstration circuit, and then work an example showing a practical
application.

Consider the simple circuit,

Resistor divider
VIN 1 0 1lvolt

Rl 1 2 3Johm

Re 2 0 1lohm
.SENS V(&)

.END

which we will analyze. PSpice is run, and in the output file will be something
similar to

DC SENSITIVITIES OF OUTPUT V(2)

ELEMENT NORMALIZED

ELEMENT ELEMENT SENSITIVITY SENSITIVITY
NAME VALUE (VOLTS/UNIT) (VOLTS/PERCENT)

Rl J.000E+00 -6.250E-0¢ -1.675E-03

R2 1 .000E+00 1.875E-0% 1.87?5E-03

~ Vin 1.000E+0OO0 c.500E-01 ¢.500E-03

There will be a table like this for each <output value> in the .SENS statement.
Also, the sensitivities to selected currents would be labeled ‘*‘AMPS/UNIT”’ and
‘“AMPS/PERCENT.”’

What does this mean? First let’s look at the results for VIN. Our resistor
divider has a voltage ‘‘gain’’ of Y4, that is, the variation of the voltage at V(2) is
one-quarter of the variation in VIN. This results in a sensitivity of 0.25 volt change
in V(2) for a one-volt change in VIN, or 0.25 volts/unit (the ‘‘unit’’ for a voltage
source being volts). How can we check this calculation? The .SENS statement
also caused the output of the bias-point calculation. We can see that the ratio of
V(2) to VIN is Y4; the circuit has only linear elements, so doubling the value of
VIN will double the value of V(2).

The last column shows sensitivity normalized to the component value, that
is, as a percentage change. These values are then calculated by multiplying the
former column (volts/unit) value by the element value, and then dividing by 100 to
obtain a percent value.

By looking at the values calculated for R2, which (again) are equal since the
resistor’s value is one ohm, we can verify these by considering that

V(2) = VIN-R2/(R1 + R2)

16 DC Sensitivity Chap. 3

This means that the sensitivity of V(2) to R2 will be
(d/dR2)-VIN-R2/(R1 + R2)
which works out as
VIN-((R1 + R2) — R2)/(R1 + R2)* = RI/(R] + R2)? = 3/16
By analogy we can calculate the sensitivity of V(2) to R1 will be

VIN-((R1 + R2) — R1)/(R1 + R2)* = R2/(R1 + R2)? = 1/16

Notice that for R1 the normalized sensitivity is identical, in magnitude, to the normal-
ized sensitivity for R2. It follows that a percentage change in either section of the
resistor divider would produce the same size of effect on the output. However,
increasing R1 will decrease the output voltage so the sensitivity values are negative
for this resistor.

Exercise 3.2.1

Run the sensitivity analysis just described. Now, change the value of R1 to 4 ohms
and the value of VIN to 2 volts. Are the results what you expected?

3.3 CIRCUIT EXAMPLE: WORST-CASE DESIGN

One type of circuit where sensitivity to element values is of great importance is
the digital-to-analog converter. These circuits generally use component ratios to

©) 20 K ®

~AM— Out

Vmsb
?10 K

20K

@
C% O

-

Figure 3.1 Schematic for D-to-A converter using an R-2R ladder
network.

Sec. 3.3 Circuit Example: Worst-Case Design 17

generate a voltage that is a fraction of a reference voltage, where the fractional
amount is set by a digital (binary coded) input. Digital systems, such as computers,
may generate analog signals by using these circuits. Consider this circuit,
represented by the following circuit file:

* Sensitivity analysis of D=A converter
Vmsb 1 0 Ovolt; most-significant-bit input
Vlsb 2 O 0Ovolt; least-significant-bit input

R1 1 3 20K
R2 2 4 20K
R3 3 4 10K
R4 4 0 20K
.sens v(3)
.end

The inputs to this circuit are set at either 1 volt, or zero, depending on the binary
input we are simulating. In this type of converter, called an R-2R ladder because
of the resistor ratios, the input voltages are both the binary input as well as the
reference voltage. You may think of it as being the binary bit value, 1 or 0, multiplied
by the reference voltage. The output voltage, at node 3, is a fraction of the reference
voltage, controlled by the ratio of the current binary input value to the number of
values representable. In this case, with 2 bits, we will be able to generate the
following fractions: %, %, %, and %a.

To generate all of the input (binary code) cases we will need to make four
runs. Each run will use a different combination of Vmsb and Vlsb, with values of
either O volt or 1 volt, in the following combinations: 0-and-0, 0-and-1, 1-and-0,
and finally 1-and-1. This provides the binary input for the decimal numbers 0, 1,
2, and 3. The output at V(3) will DC-bias to the voltage levels of 0, 0.25, 0.5,
and 0.75, for these inputs, respectively. Looking at the sensitivity table for the
inputs 0-and-0:

DC SENSITIVITIES OF OUTPUT (V3)

ELEMENT NORMALIZED
ELEMENT ELEMENT SENSITIVITY SENSITIVITY
NAME VALUE (VOLTS/UNIT) (VOLTS/PERCENT)
Rl c¢.000E+04 0.000E+00 0.000E+00
R2 2 .000E+04 0.000E+00 0.000E+00
R3 1.000E+04 0.000E+00 0.000E+00
R4 c .D00E+04 0.000E+00D 0.000E+00
Vmsb 0.000E+00 S.000E-01 0.000E+00
Vlsb 0.000E+00 2 .500E-01 0.D00E+OO

The results are rather boring. Since all of the node voltages are zero it is difficult
to affect the output voltage by changing a resistor value. Moving on, we look at
the results for the combination 0-and-1:

18

RL
RE
R3
R4
Vmsb
Vlsb

2.000E+D4
2.000E+04
1.0D00E+04
2 .000E+04
0.000E+00
1.000E+0Q0

&.250E-06
-7.813E-06
-6 .250E-06

4 .6BABE-DO6

S.000E-0L

¢ .S00E-0L

DC Sensitivity Chap. 3

1.250E-03
-1.563E-03
-6.250E-04
9.375E-04
0.000E+00
2.500E-03

Then, we look at the table for the combination 1-and-0:

R
R2
R3
R4
Vmsb
Vlisb

2 .000E+04
c.000E+DB4
1.0D0E+D4
2 .000E+04
1.000E+00
0.000E+00

-1.250E-05
3.125E-06
1.250E-05
3.125E-06
S.000E-0%
2.500E-0)

-2.500E-03
L.2S0E-D04
1.250E-03
t.250E-04
S .000E-03
0.000E+00

Finally, we look at the table for the combination 1-and-1:

R1
RE
R3
R4
Vmsb
Vlsb

2 .000E+04
2 .000E+D04
1 .000E+04
2 .000E+04
1 .000E+00
1 .000E+00

-k .250E-06
-4.68BE-0B
L.250E-06
?.813E-06
5.000E-DL
2.500E-01

-1.250E-03
-9.375E-04
&.250E-04
1 .563E-03
S.000E-03
2.500E-03

Now we scan the tables for the resistors only, since we want to check the design
against component variation. To calculate the normalized, worst-case deviation,
we add the absolute value of the normalized deviations, for the resistors only, for
each table. The absolute value is used because we assume that the resistors will
deviate in the direction that changes the output voltage the most, a la Murphy’s
Law. The table with the worst deviation is the third table with a value of SmV for
each percent of resistor value change. This would suggest that for this digital-to-
analog converter, a specification requiring 10mV maximum output deviation would

allow the use of 2 percent (tolerance) resistors.

Exercise 3.3.1

Using the digital-to-analog converter example, now assume that the reference voltage
(used at the inputs) has a 1 percent deviation. For each table, calculate the deviation
duc to the reference voltage, and subtract that result from a system specification of
10mV maximum deviation at the output. Using the remaining ‘allowable’’ deviation,
what tolerance of resistors must be used to meet the system specification?

CHAPTER 4

DC Sweep

The simulations we have looked at so far calculated only quiescent, or DC, operation
where the voltage or current sources maintained a fixed value. In this chapter we
will look at circuits where the sources vary, though the analysis will still calculate
quiescent (DC) operation. Using this type of analysis allows you to look at the
results from many .OP analyses in a single simulation run. That is why it is called
a ‘‘sweep.”’

Later in the chapter we will look at *‘controlled’’ sources. These allow you
to build function blocks to transform signals.

4.1 SWEEPING A SOURCE

The DC sweep analysis is controlled with a “*.DC”’ statement. When you “‘sweep”’
a source the simulator starts with one value for a source (voltage or current), calculates
the DC bias-point (exactly as it does for the .OP analysis), then increments the
value and does another DC bias-point calculation. This increment-then-analyze proce-
dure continues until the last source value has been analyzed. You get to select the
starting value, increment, and final value for the sweep. The results are the same
as doing many .OP analyses, but is faster if you want to check the range of source
values due to (i) new types of output that are available for this analysis, and (ii)
the way the calculations are done.

The caiculations for the .DC analysis are faster than the set of equivalent
.OP analyses if only for the reason that PSpice does not have to reread the circuit
file each time and then do the calculations. Beyond that, having arrived at the

19

20 DC Sweep Chap. 4

solution to the circuit for the initial source value, the solution for the next source
value is assumed to be relatively close to the first solution. The first solution provides
an estimate for the second solution. Then, having found the solution to the circuit
for the first and second values, the solution for the third value is ‘‘guessed’” by
linear extrapolation of the first two solutions. This provides the estimate for the
third solution. From then on, PSpice extrapolates from the previous two solutions
for the next estimate solution (PSpice does not make use of more than the previous
two solutions because it has been found that the time required to calculate higher-
order extrapolations is not worthwhile for shorter solution times).

4.2 THE .DC STATEMENT

The .DC statement specifies. the values used during the DC sweep. The statement
says which source value is to be swept, the starting value, the amount to increment
the value each step of the sweep, and at what value to quit the sweep. In the
syntax shown,

.DC <source name> <start value> <stop value> <incr. value>

the <source name> is an independent source (voltage or current) in your circuit
file. The .DC statement does not define the source, or how it is connected to the
circuit. The .DC statement says only what values that source will have during the
.DC analysis. You need to make sure that you have specified the source, in your
circuit file, or PSpice will not be able to do the .DC analysis.

When adding a .DC statement to your circuit file, you do not need to change
any of the other lines describing your circuit. Just add the .DC statement, as the
sweep of values specified will override the fixed value indicated by the independent
source statement (V source or I source) during the DC sweep analysis (only).

4.3 PRINTED OUTPUT

Being able to sweep through many values and calculate many results means you
will want to get output that is different from the .OP analysis. Actually, it is the
same output but the format has been changed so that it is more convenient to use.
There are two things you would probably want to have in this new form of output:
(i) to organize the calculated results so they could be referred to the value of the
sweep source (like a table), and (ii) to be able to select which results are printed
(to minimize the amount of output). The .PRINT statement does the job of selecting
and tabulating results for the .DC analysis and other analyses to be explored later
(and is used the same way for these other analyses, so learning it now will help
later). :

The .PRINT statement simply specifies which analysis the statement applies
to, since it is used for many types of analyses, and which results to print. In the
syntax shown, for printing results for the DC sweep,

Sec. 4.3 Printed Output 21

.PRINT DC <output value> . . .

you can have many entries in the table of results, or output values. Each output
value will get its own column in the table, and each row of the column will be the
calculated result of the output value for each step in the DC sweep. The columns
are in the same order as specified in the .PRINT statement. Usually you will want
to print the sweep value in the first column to simplify finding results in the table,
so PSpice does this for you; the first column, which comes before the columns
you specify, always contains the value of the sweep variable.

The output values you can print are basically node voltages and device currents
(which also means source currents, as a source is also a device). Node voltages
can be printed relative to ground (node ‘0’’) or relative to another node (that s,
the value printed is the difference of the voltages at two nodes). The syntax is
shown for the DC sweep:

.PRINT DC V(7) to print the voltage at node 7

.PRINT DC V(6,3) to print (voltage at node 6) minus (voltage at node 3)

.PRINT DC V(R1) to print the voltage across R1 (any two-terminal device)
Device (and source) currents may be printed using the syntax:

.PRINT DC I(R4) to print the current through R4 (any two-terminal

device)
You can, as mentioned earlier, print several values in one table, and mix voltages
and currents; for example:

.PRINT DC V(3) V(4) I(R2)

Exercise 4.3.1

Add a .DC statement to the (bridge) circuit and sweep the supply voltage from 1 to 2
volts in .1 volt increments. Also add a .PRINT statement to print values for the
supply (sweep) voltage and the current through two of the resistors. Does the table
produced by PSpice indicate that this circuit is linear?

The calculated value of current through a device, such as a resistor, means positive
current, which will be flowing from the more positive voltage level to the more
negative voltage level. The value printed may have the opposite sign (that is, a
negative value instead of positive) from the one you were expecting. This depends
on the order of the nodes when you specified, say, a resistor, in your circuit file;
the syntax ‘R4 3 5 150”’ means a 150-ohm resistor between nodes 3 and 5. If
PSpice finds that node 3 is more positive than node 5, then PSpice will calculate a
positive (value) current through R4. You can think of current through the device
as positive current flowing into the first node in the line specifying the device.

Exercise 4.3.2

Using the previous example’s circuit file, swap the nodes of one of the resistors specified
in the .PRINT statement. How did the output change? Does this mean the circuit
works any differently from before?

22 DC Sweep Chap. 4

4.4 PLOTTED OUTPUT

After a few simulations using the DC sweep analysis, you may notice that looking
through the printed table is getting tedious. Wouldn’t it be nice to have the computer
graph the results? Well, PSpice will print graphs if you specify a .PLOT statement.
Then you can use either .PRINT or .PLOT to look at the results, or both.

The .PLOT statement is nearly the same as .PRINT; you specify the type of
analysis the plot is for, and which results you want plotted. The output values
have the same form as for the .PRINT statement. If you include two .PLOT statements
in your circuit file you should get two plots. In the syntax for the DC sweep

.PLOT DC <output value> . . . [<min range>, <max range>]

notice that .PLOT will let you set the range of the output axis. If you do not
specify the range, PSpice will automatically calculate a range which includes all of
the output values.

Exercise 4.4.1

Redo the previous exercise showing the use of the PRINT statement with DC sweeps,
but use a PLOT statement instead.

4.5 LINEAR CONTROLLED SOURCES

The controlled sources are one of the most useful (and overlooked) features of
PSpice (and this is true of many other non-SPICE simulators). Controlled sources
measure voltage or current and use the measured value to control their output (also
a voltage or current). The transformation allowed between input and output is a
multidimensional polynomial. Both the number of dimensions (that is, number of
measured inputs) and degree of each polynomial are set by the user (that is, you).
But first, we will consider the linear case for these controlled sources before trying
anything more difficult.

Allowing two types of input (voltage and current) and output yields four combi-
nations of input/output:

the voltage-controlled voltage source (VCVS)
the current-controlled current source (CCCS)
the voltage-controlled current source (VCCS)
the current-controlled voltage source (CVVS)

These four sources are devices, just like resistors, and are given PSpice device types
of E, F, G, and H, respectively. Mathematically, you may think of these devices as
functions:

Sec. 4.5 Linear Controlled Sources 23

VCVS is the function vo = E(vy, vy, V3, . . L)
CCCS is the function ip = F(iy, 13, i3, . - .)
VCCS is the function ip=G(vVy, Vo, V3, . .)
CCVS is the function vo = HGy, iy, 13, . .)

We specify these sources in a way that is similar to the passive devices we have
been using: name, connecting nodes, and (instead of value) the transforming polyno-
mial. As you might have guessed:

Exx is a voltage-controlled voitage source
Fxx is a current-controlled current source
Gxx is a voltage-controlled current source
Hxx is a current-controlled voltage source

In the most simple form, an example of a voltage-controlled voltage source,
E2573410

is a voltage source, whose output nodes are 5 and 7 (remember, the positive current
is flowing out of the connection to node 5), and whose output voltage is controlled
by the voltage present at nodes 3 and 4, with a simple multiplying gain of a factor
of 10. This is the same as the equation

vs — v; = 10-(v3 — vy)
You may also want to include, for clarity, some superfluous (to PSpice) commas
and parentheses to identify the input nodes. For example, the form
E2 57 (3,4) 10

makes the statement more device-like (a name, followed by two nodes, and then
the value specification).

The same form may be used for the voltage-controlled current source, except
that the multiplying value is converting voltage to current so it has the dimension
of amps/volts. So instead of ‘‘gain’’ we have ‘‘conductance,”” but as there is a
transfer from one set of nodes to another set, it is called ‘‘transconductance.’’

Exercise 4.5.1
Write down a VCCS statement for the function
13 = (v5 — v;)/20ohms

What are the units for the transconductance value?

When the measured input is current, the syntax is different. PSpice needs to be
told which current, that is, the current through which device. To simplify matters,

24 DC Sweep Chap. 4

PSpice measures currents through voltage sources (the fixed value V devices, not
the variable E or H devices described here). Instead of controlling nodes, the syntax
includes the name of the V device that has the controlling current; for example,

F435V25

is a current source whose output current is 5 times the current flowing through V2.
Again, this is a simple amplification gain in current. If the device were an H device
(CCVS) instead, there is a transformation from current to voltage. Then the units
are volts/amps or ‘‘resistance,”” but again because of the transfer to another set of
nodes, it is called ‘‘transresistance.”’”’

Exercise 4.5.2
Write down a CCVS statement for the function
v; — V5 = I(V5) - 200hms

What are the units for the transresistance value?

You probably didn’t realize that you have already used one of the controlled sources
in the previous example circuits. To PSpice the resistor is simply a voltage-controlled
current source, with the same input and output terminals! To the rest of a circuit

R5 3 2 120
is the same as
G532@3,2) 120

The only difference is that when PSpice checks your circuit, the G device is a
current source (with infinite impedance) and does not qualify as a DC path to ground.

Example 4.5.3

Review some of the previous exercises and replace resistors with G devices. Use
.PRINT and/or .PLOT to verify that the operation of these circuits has not changed.

4.6 POLYNOMIAL CONTROLLED SOURCES

What is different about a polynomial controlled source (some call these ‘non-linear’’
sources), from the linear case, is how the polynomial is described to PSpice. First,
the dimension of the polynomial is specified. Then, the inputs to be measured
must be described. Finally, the coefficients of the polynomial are specified. Single-
dimension polynomial functions, which are basically the additive combination of
many linear functions, are easily described using the syntax

(one of E, F, G, H)xx <node> <node> POLY(1) <inputs> <coefficients>

Sec. 4.6 Polynomial Controlled Sources 25

As you may have guessed, polynomials in two dimensions (that is, having two
controlling inputs) will use *‘POLY(2)’’ instead.

The list of coefficients are in order of ascending powers, that is, the list of
coefficients a, b, c, etc., come from the formula

a+bx+cx2+dx*+---

where every coefficient up to the last non-zero coefficient must be specified. For
example, if you wanted the formula

1+ 2-x3
you would specify the coefficient list
1002

This way PSPice knows you are specifying a third-degree polynomial and that the
coefficients of the higher degrees are all zero.

The controlling inputs come as pairs of nodes (for voltage inputs) or V device
names (for current inputs). There must be as many pairs, or names, as there are
dimensions to the polynomial. For now, we will focus on single-dimension polynomi-
als.

Exercise 4.6.1

Create a circuit file that does a DC sweep from —2 to +2 volts in .1 volt increments.
Add to the file a VCVS which implements the function x3 — x. Use .PRINT and
.PLOT to check the output of the controlled source. Try this again with a VCCS.

When you want to have an output that is the sum of other input functions, for
example,

output = fi(x;) + fo(x,) + - - -

you do not need to use a higher dimension POLY(); simply add the outputs. If
they are voltage outputs, put the controlled sources in series. The voltages combine
so that the voltage across the series is the sum of the individual voltages. The
same is true for current outputs, except that you will want to have them in parallel
with each other. This makes it easy to check the correctness of each function by
itself before combining it with the other functions.

Exercise 4.6.2

Redo the previous exercise’s function x> — x as the sum of two functions: x> and
—x. Run the DC sweep and check each function separately. Are there other ways to
implement the —x function?

26 DC Sweep Chap. 4

4.7 GRAPHICS OUTPUT'

For those of you used to the world of computer graphics, the output from the
simulator that we have looked at seems primitive. What is missing is the ability to
look at the response of your circuit on the computer display. After all, even some
pocket calculators will plot graphic functions. For PSpice, we have such a facility
called “‘Probe.”” To use Probe you must first tell PSpice to create a data file for
Probe, which is done by using the .PROBE statement.

The .PROBE statement is similar to the .PRINT and .PLOT statements. With
.PROBE you may select node voltages and device currents to be output from the
simulation. However, this is generally not the best use of the .PROBE statement;
if you just put .PROBE in your circuit file, without specifying any particular outputs,
PSPice will save all of the node voltages and device (branch) currents. Then later,
when you are using Probe to look at the results of the simulation, everything has
been saved for your inspection. You select the waveforms you want to view and,
if you are curious about the operation of some section of your circuit, you may
view those without rerunning the simulator (which is what you would need to do
if the only output you had was .PRINT or .PLOT).

In the syntax shown, for saving results of any of the analyses,

.PROBE [output value] . . .

remember that if you want to save all of the voltages and currents from the simulation
that you do not specify any output values. This ‘‘default’’ mode tells PSpice to
save everything. If you do specify any output values, then only those that are
specified will be saved. You would normally do this only to save room in the data
file, which PSpice is making as input for Probe.

The file created by PSpice for use by Probe is called PROBE.DAT. This file
has a structure that tells Probe what analyses, voltages, currents, and independent
variables (such as time, frequency, etc.) are available. Of course, the output data
is in the file, too. For most of the circuits you will simulate, even when saving all
of the results, the PROBE.DAT files that are generated are quite modest in size by
today’s standards. Many complete circuit files, with the Probe data file output from
PSpice, may be saved on one of the low-density IBM-PC diskettes. When you are
saving a circuit, having a PROBE.DAT file for that circuit with all of the output
variables saved is valuable if you ever want to review the simulation results.

However, since PSpice saves outputs at each step during the simulation, long
simulations of large circuits will generate considerable output. Since you are usually
interested in only a few voltages or currents, you can specify that PSpice save
only those items to reduce the amount of data in the PROBE.DAT file. For large

! This section introducing graphics is placed here because it is helpful for you to be using
waveforms graphics for the rest of the book. Also, this is the first opportunity we have to look at any
interesting waveforms.

Sec. 4.8 Muitiple-Input Controlled Sources 27

circuits, specifying a few output variables will also speed the simulation as PSpice
will skip the operations done to save all of the other output variables.

Probe is simple to use and is menu driven so you don’t need to remember
any commands or statements (as with PSpice). Most of your difficulty will probably
come from getting Probe set up and started the first time. Then it will be easy and
you can focus on your simulations.

Exercise 4.7.1

Put a .PROBE statement in the circuit file for the sweep of the function x> — x. Use
Probe to examine the output you had plotted using the .PLOT statement.

Exercise 4.7.2
What other ways could you generate or display the curve of x> — x?

4.8 MULTIPLE-INPUT CONTROLLED SOURCES

When the controlled source you want is a function of several inputs, describing
the coefficients can get complicated. In general there are many possibilities and
the general form must allow for all of them. PSpice is told only the number of
dimensions (that is, the number of ‘‘measuring’’ inputs) for the polynomial, so the
list of coefficients follows a rule to describe the function you want. The general
form description is complex to follow, but we can look at a three-input case to get
the pattern of the general form. Assuming our inputs are v;, v,, and v;, and a list

of coefficients called kg, k;, ky, . . . , the polynomial form for three inputs is
the constant term ko + k
plus, the linear terms ki'vitkyrv, + kyovy +
plus, cross terms ke Vi + ks vy vy + kg vy rvs +
k' V3 +Kkgovyovy +
ko' V3 +
plus, more cross terms Kio*Vi + ki vi-v, + Kppviovs +
kiz*va + kg vivs +
le'Vg + ..

and so on. Obviously it will be easy to make errors if we have many inputs (which
rarely happens, fortunately)!

The most basic use of the general case is to sum several input voltages. A
four-input voltage summer would have the form

Eout 7 0 poly(4) (1,0) (2,0) 3,00 (4,0001 111

Again, notice the\parentheses around the voltage node pairs, which are also comma
separated. You may do this in ‘PSpice, and most SPICEs, as the commas and par-
entheses are treated like spaces. This improves the ‘‘readability’” of the polynomial
form.

28 DC Sweep Chap. 4

Exercise 4.8.1
Write down a voltage summer with the following weighted inputs:
1-v;+3-v,+2:v; + .5y,

Another common case is a two-input controlled source. You may have thought
about how to multiply two voltages. Using the syntax described above, a voltage
multiplier would be

E2 3 4 poly(2) (7,8) (5,6)00001

where the output voltage (across nodes 3 and 4) is a function of the input voltages
(across nodes 7 and 8, and nodes 5 and 6). The offset coefficient (that is, the
coefficient for the zeroeth degree) is zero, as well as the coefficients for linear
voltage terms. That’s three zeros, so far. The fourth zero is for the quadratic voltage
term of the first input voltage. Then we arrive finally at the coefficient for the
multiplication of the two input voltages, which is set to unity.

Arriving at a cubic function of two inputs is too painful using the general
syntax. It is easier for you to decompose the function into two stages (if this is
possible); for example, '

xy?

becomes

x)(y?)

This way you create the individual functions (and test them, if you are uncertain
about their operation), and then combine the intermediate outputs with the multiplier
described previously.

4.9 FUNCTION MODULES

»

By using the controlled sources you can create a variety of modular function blocks.
With a set of these in your ‘‘simulator toolkit,”” you can quickly check circuit
ideas. And, even though we are investigating these using DC sweep analysis, these
blocks also work for all of the other types of analyses.

We have already covered the voltage-multiplier function using a controlled-
source statement

Ename <+out node> <—out node>
+ POLY(2) <+A node> <—A node> <+B node> <—B node>
+00001 '

which will multiply the voltages across the node pairs A and B.

Sec. 4.9 Function Modules 29

Exercise 4.9.1

Create a current multiplier which multiplies the current flowing through two independent
voltage sources. Test it to be sure the direction of current output is what you expected.

If you were to connect the same nodes to both the A and B input of the voltage
multiplier, the output would then be the square of the input voltage. This is a trivial
extension of the multiplier. However, if we include the multiplier in a feedback
loop, we can develop new uses.

Feedback theory tells us that a circuit, as shown in Figure 4.1, which has
three major sections—(i) a forward path, including a perfect (one hopes) amplifier,
(ii) a feedback path, which has the interesting circuitry, and (iii) a difference block,
which creates the “‘error’” signal—will develop the transfer function

output = input- A/(A-K + 1)
so that the gain of the circuit is
gain = output/input = A/(A-K + 1) = (I/K)-A-K/(A-K + 1)
so that if the forward amplification gain, A, is large, the circuit gain becomes
gain = /K

In PSpice, we can easily create ‘‘perfect amplifiers”” that are linear and have huge
gain ratios, with the controlled-source statement. In fact, we can even integrate the
amplifier with the difference function to create a “*perfect error amplifier”” by imple-
menting the function :

output = gain-input — gain - feedback

Now for the feedback section. If the entire circuit were to perform, say, the square-
root function, then the function the féedback section has to perform is

gain = output/input = input"*/input = 1/K

+
Input /2-2\ -+

A\/ — Output
K -

Figure 4.1 Schematic of generalized feedback circuit.

30 DC Sweep Chap. 4

This means the feedback section has to square the output voltage, a function we
just covered earlier. Now we can build a circuit that calculates, with a small degree
of error, the square-root of the input voltage.

Square-root circuit

Vin 2 0 O

Rin 1 0 1EG

Efwd 2 0 poly(2) (1,0) (3,0) 0 LEb-1E& ; error amplifier
Rfwd € O 1E&

Erev 3 0 poly(2) (2,0) (2,0) 0 0 0 0 1 ; feedback section
Rrev 3 0 1EG

.DC Vin 0 10 .%

-.PROBE

.END

Notice that resistors were placed across all of the source outputs. Without them
the source outputs would be dangling, for the inputs to the controlled sources are
considered by PSpice to have infinite impedance.

Exercise 4.9.2

Build and run the square-root circuit. Check the output values. How could the feedback
section be simplified to have only one input? Try a different DC sweep, starting at
+5 volts and sweep to —5 volts. Why doesn’t the circuit work for negative input
voltages?

Exercise 4.9.3

Build and test a cube-root circuit. Does it work for negative input voltages?

Now suppose we wanted a circuit whose output would be the ratio of the two
input voltages. Then the function the feedback section has to perform is
gain = output/input] = (inputl/input2)/input] =1/inpur2 = 1/K

This means the feedback section has to multiply the output voltage by the denominator
point. So now we can build a circuit that calculates, with a small degree of error,
the ratio of two input voltages.

Divider circuit
Vtop 1 0 L ; top of fraction

Rtop 1 0 1EG

Vbot 2 0 1 ; bottom of fraction

Rbot 2 0 1EG

Efwd 3 0 poly(2) (1,0) (4,0) O EL-1EL ; error amplifier
Rfwd 3 0 LEG

Erev 4 0 poly(2) (3,0) (2,0) 0 0 0 0O 1 ; feedback section
Rrev 4 ¢ 1Eb

.DC Vbot .1 1 .05

-.PROBE

.END

Sec. 4.10 Subcircuits 31

Exercise 4.9.4

Build and test the divider circuit. ‘Try extending the function to be the ratio of two
independent, second-order polynomials.

4.10 SUBCIRCUITS

Now that we have built some useful function blocks, there is still the problem that
for each use of a block we would have to rekey the section of circuit into our
circuit file. Furthermore, if there were multiple blocks of the same type, unique
nodes and component names would have to be used. This quickly becomes tedious
and inflexible. To help out, PSpice has a macro facility called a *‘subcircuit’’ which
captures a circuit function as a ‘‘subnet’’ of connected components. Terminals are
assigned for the subcircuit to connect it into your circuit. The subcircuit definition
has the form

.SUBCKT <definition name> <node 1> <node 2> - - -
components defining circuit function
.ENDS

where the list of nodes identify which of the nodes of the subcircuit are terminals
that may be attached to the external circuit. Node numbers within the subcircuit
are separate from, and are not to be confused with, any nodes that might be in the
external circuit (with the exception of the *‘0*’, or ground, node, which is a global
node reference). For example, we could encapsulate the square-root function from
before by the following subcircuit definition: :

.SUBCKT SqRoot 1 2 3 4

Efwd 3 4 poly(2) (1,2) (5,0) 0 1Eb-1EGL; error amnplifier
Erev 5 O poly(l) (3,4) 002 ; sinplified feedback section
Rrev S 0 1Eb

.ENDS

Notice that the input nodes (1 and 2) and the output nodes (3 and 4) are ‘‘floating,”’
so that the function block is now similar to the controlled-source statements and
may be inserted in any circuitry.

To use the subcircuit in a circuit file PSpice uses the convention that these
“new”’ devices are treated as a new device type, whose names start with an “‘X,”’
as follows:

Xname <node 1> <node 2> - - « <subcircuit definition name>

Each of the terminal nodes in the subcircuit definition must be used when the subcircuit
is used, and the order of the nodes is the same as the order used-in the definition
of the subcircuit. For example, we will rewrite the test circuit for the square-root
function from before:

32 DC Sweep Chap. 4

Square-root test circuit

Vin , 0 O

Rin 1 0O 1EG

Xblock 1 O 2 O SqRoot ; here is where we use the subcircuit
Rout 2 0 1E6

*Square root definition‘

.SUBCKT SqRoot 1 2 3 4

Efwd 3 4 poly(2) (1,2) (5,0) 0 1Et ~1EL ; error amplifier
Erev 5 0 poly(l) (3,4) 0 0 1 ; simplified feedback section
Rrev S 0 1Eb

.ENDS

%

.DC Vin O 10 .1

-PROBE

.END

The subcircuit definition may be anywhere between the title line and the .END
statement. With PSpice you may collect all of these function blocks into a “‘tool
kit”’ library file that will be searched by the command. ,

.LIB <filename>

to bring in only the subcircuit definitions needed by a particular circuit file. You
can use these library files to save and reuse function blocks that are useful to your
work.

CHAPTER 5

Transfer Function

The “‘transfer function’’ analysis is another DC-bias analysis and is used to calculate
some external, or ‘‘black box,’’ characteristics of your circuit. The output of this
analysis are values for (i) ‘‘small-signal’> DC gain (input-to-output transfer ratio),
(ii) DC input resistance, and (iii) DC output resistance. We will examine what
these values tell you about your circuit.

5.1 SMALL-SIGNAL DC ANALYSIS

The transfer function of your circuit involves ‘‘small-signal’’ DC analysis. ‘‘Large’
signals are the normal excursions that your circuit might encounter; for example,
the output fluctuations of a stereo amplifier are generally large. ‘‘Small’ signals
are minuscule; for example, the signal amplified by a radio receiver is quite small.
However, ‘‘small-signal’’ analysis deals with circuit operation in the limit of signals
approaching zero strength. When your circuit has linear operation for the signals it
will normally encounter, then small-signal calculations may be applied to an operation
that is merely ‘‘small-ish.”” Large signals need to be treated in a different fashion,
which we will get to in due course.

Even though small-signal analysis is for small (nearly zero level) signals,
this does not mean that your circuit is ‘‘turned off’” and all the nodes are at zero
volts. It just means that the stimulus to the circuit is small, but the power supply,
for example, has its normal value. The situation where your circuit is energized by
DC sources, but there is no other external stimulus, is the bias-point situation we
have looked at before. Small-signal DC analysis, then, does calculations of the

33

34 Transfer Function Chap. 5

effects of minuscule input stimulation to your circuit. It answers, for example, the
question, “‘If the input node were to deviate slightly from its bias-point value,
what would the output do?”’

5.2 CIRCUIT GAIN

The most common question about the small-signal operation of a circuit is, ‘“What
is the gain?”’ This is probably because the most common electronic circuit is an
amplifier (even digital circuits amplify), and its gain is a fundamental specification.
Gain is the ratio of output signal deviation to input signal deviation. We use the
word ‘‘deviation’’ because we need to differentiate between the quiescent, or steady-
state, level of the input and the small excursions that represent the ‘‘real’” signal.
Mathematically, small-signal DC gain is the derivative of output with respect to
input, at the DC bias-point (and at zero frequency). For example,

av out/ av in

is an expression for voltage gain. There are other types of ‘‘gain’’ you may be
interested in. As you might have guessed,

dIout/ dlin

is an expression for current gain. However, you may also want to evaluate
dIload/ dVin

which is an expression for transconductance, or
dv . /dl,

which is an expression for transresistance.

out

5.3 INPUT AND OUTPUT RESISTANCE

Resistance, as you will recall from Ohm’s law, is the ratio of voltage across the
resistor to current flowing through the resistor: V.= IR or R = V/I. The input
and output resistance of a circuit is much the same, although we are now referring
to the ‘*dynamic,’’ or small-signal, resistance at the input or output. Mathematically,
small-signal DC resistance is the derivative of the input voltage with respect to the
input current, at the DC bias-point (and at zero frequency). For example,

dvin/dIin

is an expression for input resistance.

Sec. 5.5 Transfer Function Analysis 35
5.4 THE .TF STATEMENT

The ‘. TF’’ statement specifies what you consider to be the “‘input’’ and “‘output’
of your circuit (PSpice doesn’t know how your circuit is being used). Once the
DC bias-point for the circuit is calculated, PSpice calculates the following “‘black
box,”’ or ‘‘transfer’” functions: gain, input resistance, and output resistance. The
format for the statement is

.TF <output variable name> <input source name=>

where the <output variable name> is in the same format as for the .PRINT statement.
The <input source name> must be an independent source (V or I device); this is
because the input usually has some fixed input bias, even if it is zero, which you
may want to set (also, remember that PSpice will not analyze circuits with * ‘dangling”’
nodes).

5.5 TRANSFER FUNCTION ANALYSIS

Having a .TF statement in your circuit file causes the transfer function calculations
to be done when the DC bias-point calculations are completed. You do not need to
specify any other output, such as .PRINT, to get the results of the transfer function
analysis. We can now try working some examples to see what .TF will do. Usuaily
you will be using .TF to analyze a more complicated, active device circuit, such
as a transistor amplifier. However, for ease of understanding we can demonstrate
the use of .TF with linear and nonlinear controlled sources as our active elements.
Consider the simple circuit

Resistor divider
Vin 1 0O 1lvolt

Rl 1 2 3ohn

R2 2 0 lohnm

.TF v(2) Vin
.END

which we will analyze. PSpice is run, and in the output we will find (something

similar to):
vV(e)/Vin = 2.500E-0%1
INPUT RESISTANCE AT Vin = 4 .000E+00

OUTPUT RESISTANCE AT V(2) = 7?.500E-01

What does this mean? Since we specified both input and output variables as a
voltage at a node and a voltage source, respectively, the transfer function gain

36 Transfer Function Chap. 5

calculation is voltage gain. Our resistor divider has a voltage gain of Y4, meaning
that the variation of the voltage at V(2) is one-quarter of the variation in VIN. The
input resistance ‘‘seen’’ by (input) VIN is 4 ohms, as you might have expected.
This means that a variation in the voltage (in volts) of VIN will be four times the
measured current variation (in amps) of VIN caused by the voltage variation. The
output resistance ‘‘seen’’ by (output) node 2 is ¥ ohms. This means that if you
could manage to vary the voltage at node 2, the size of the variation (in volts)
would be three-quarters the size of the current (in amps) required from the means
by which you accomplished the variation. How can we check these calculations?

Checking the value for gain is fairly simple; the .TF statement also caused
the output of the bias-point calculation. We can see that the ratio of V(2) to VIN
is Ya; the circuit has only linear elements, so doubling the value of VIN will double
the value of V(2).

Exercise 5.5.1
Run the transfer function analysis just described. Suppose you don’t immediately see
that doubling the value of VIN will double the value of V(2) for the DC bias-point
.. Tyt

Checking the input resistance ‘‘seen’’ by VIN is elementary, too. The output
from PSpice also included the current supplied by VIN. Since VIN is the only
source of current to the circuit, we may divide VIN’s voltage by its supply current
to arrive at the resistance ‘‘seen’’ by VIN. You might be concerned that the literal
answer to this formula is —4 (ohms), however the —0.25 amps of current in the
output file indicates just that the current is flowing out of VIN’s first node. This is
from the SPICE convention for current direction: positive currents flowing into a
terminal have a positive value.

Checking output resistance is easy, too. Since it was stated that output re-
sistance was the ratio of the output voltage change to an external influence’s
current deviation, let us try that. By adding the current source

I0UT 2 0 O0.lamp

and resimulating, we can ‘‘draw down’’ the output voltage. Now we see that the
voltage at V(2) is now 0.175 volts, instead of the 0.25 volts it was before. The
output resistance is calculated as

(0.25 — 0.175)/0.1 = 0.75

From the perspective of node 2, R1 and R2 are in parallel because the voltage
source VIN is ideal and has zero resistance. You could have calculated the output
resistance as the parallel combination of R1 and R2

I/(UR1 + /R2) = 1/(1/73+ 1/1) =3/(1 + 3) = 3/4 = 0.75

Sec. 5.6 Linear Example 37

Exercise 5.5.2

Try the method just described to check the output resistance. Now, instead of using a
current source, use a voltage source to set the voltage of V(2) to 0.3 volts. How
much current was supplied by the new voltage source? How can you use this information
to calculate output resistance? Did you get the same value?

5.6 LINEAR EXAMPLE

What kind of transfer function information is calculated for a circuit with linear
gain? Consider the circuit in Figure 5.1, represented by the following circuit file:

Simple gain-of-5 circuit
Vin 1 0 1lvolt

Rin 1 0 lohm

Gout 0 2.1 0 5.0

Rout 2 0 lohm

.TF V(2) Vin

.END

This circuit is an ideal “gain block’> with input and output resistance (both are 1
ohm). “‘Gout”’ was connected so that positive current flows into node 2, making
the gain of the circuit a positive value; when V(1) increases in value, then V(2)
will also increase in value. The result of the simulation will be something similar

to
v(e)/vin = 5.000E+00
INPUT RESISTANCE AT Vin = 1.000E+0O0
OUTPUT RESISTANCE AT V(Z2) = 1.000E+00

These were the results we expected.

Figure 5.1 Schematic for gain-of-5 circuit example.

38 Transfer Function Chap. 5

Exercise 5.6.1

You may have noticed that, in the previous example, Vin was set at 1 volt. Does
this matter? Try setting it to a different value, say 2 volts, and rerun the simulation.
What changed? Why didn’t the output of the transfer function analysis change?

Exercise 5.6.2

Assuming you know about Thevenin equivalent transformations, change the example
above to use an ‘‘E’’ device as the gain element. Check your work by running the
simulator to see that the same values are calculated for the transfer function analysis.
(Hint: Your output resistance may not ‘‘dangle,”” so connect the output node to ground
with a large resistance.)

5.7 NONLINEAR EXAMPLE

Electronic circuitry is nonlinear, however the transfer function analysis does linear
calculations on the circuit. That is, the calculations are done once the circuit has
attained its bias-point and has been ‘linearized.’” This means that all of the elements
in the circuit are expressed as their linear equivalents, which are valid only for
that particular bias-point. A different bias-point would probably require a different
““linearization.”” So far we have looked only at examples that were already linear,
so the process of linearizing these elements did not change them. Consider the
following example, which has a nonlinear element:

Nonlinear gain circuit

Vin 1 0 1volt

Rin 1 0 lohm

Gout 0 2 poly(l) (1,0) 0O 1
Rout 2 0 lohm

.TF V(2) Vin

.END

This circuit is very much like the previous example, which was linear. However,
the gain element is nonlinear as its output is the square of the voltage at node 1.
After running the simulator, the output will be something similar to

V(2)/Vin = 2.000E+00
INPUT RESISTANCE AT Vin = 1.000E+00
OUTPUT RESISTANCE AT V(2) = 1.000E+00

The input is 1 volt, and the output is 1 volt (the input voltage squared), but why is
the gain calculated as a value of 2.0? This is due to the linearization of the circuit
at the bias-point. The linear slope value of the gain circuit is the mathematical

Sec. 5.7 Nonlinear Example 39

derivative of the gain function. Remember, we defined small-signal voltage gain
as

dVout/ dvin

and now you can see the result of this definition. How can we check this value for
gain? Rerun the simulation with Vin set to 1.01 volts. This time the values printed
for the bias-point will show V(2) as 1.0201 volts, so the gain of the circuit for
small excursions in the input voltage is

(change in V(2))/(change in Vin) = (1.0201 — 1)/(1.01 — 1) = 2.01

You can see that, for small deviations in the input voltage, the output deviations
are twice as large. In this case, PSpice shows enough precision in the printed values
to see the effect of the square function; we can relate the output from the last two
simulation to what we know about ‘‘Taylor series”” from mathematics.

Taylor series involve the mathematical linearization of functions, and the series
allows you to calculate values for the function in the neighborhood of a point on
the function (which we call the ‘‘bias-point’’ in electronics). If f(x) has continuous
derivatives in the region of a point x = a, then

fix) = fla) + fa)x — a)/1! + f(a)(x — a2+ -

From the first simulation of the ‘‘voltage squared’” we have the result for a =
1.0000 and fla) = 1.0000; these are the bias-point node voltages. Now, to predict
the results of the second simulation, with x = 1.01, we know

the original function: f(x) = x*
its first derivative: fx) =2
its second derivative: f’(x) =2

so the Taylor series calculation for ¢ = 1.00 and x = 1.01 is

1.00 + 2-1.00+(1.01 — 1.00)/1 + 2-(1.01 — 1.00)*/2
=1+ 0.02 + 0.0001 = 1.0201

which is the same result PSpice calculated for V(2) in the second simulation.

Exercise 5.7.1

The circuit above is a “‘voltage squared’’ function. What transfer function results
would you expect if Vin were —1.0 volts? What bias-point would you expect if Vin
were —1.01 volts? Check this with the simulator and using the Taylor series formula.

Exercise 5.7.2
3

Try similar simulations for the function f(x) = x°.

40 Transfer Function Chap. 5
5.8 PLOTTING SMALL-SIGNAL GAIN

Probe graphics can be used to plot gain over a sweep of DC operating conditions.
Running several simulations with .TF analysis is tedious. Fortunately this technique
does not use the .TF at all, but is included here as an alternate way to get small-
signal gain numbers from PSpice. Note that this is for gain only. While there is an
equivalent technique for sweep results of input or output resistance, it is much
more interesting to look at sweeps of frequency, so we will look at this later in the
book.
The definition of small-signal voltage gain is

av out/ av in

Any of the variables or formulas you enter into Probe may be differentiated by
wrapping them in the *‘d()”’ function. Also, single voltage or current values may
be differentiated by using a ‘‘d’’ prefix. For example, the derivative of V(2) is
dV(2). Probe is able to calculate approximations for derivatives by using divided
differences. This follows the notion that in the limit, as a approaches x

fix— a)l(x — a) = f(x)

If we are careful to make the differences small enough, then the calculations should
be useful (we also should not make the differences too small, or Probe could lose
accuracy in its calculations). ’

Using the ‘‘voltage squared’’ circuit from earlier in this chapter, we can look
at its small-signal gain over a range of bias combinations using the DC sweep and
Probe. The circuit would be set up as shown:

Nonlinear gain circuit

Vin 1 0 1volt

Rin 1 0 lohm

Gout 0O 2 poly(1l) (1,0) 00 1
Rout 2 0 lohm

.DC Vvin -2 2 .05

.PROBE

.END

After the simulation is finished, start Probe (you may have this set up to happen
automatically). The divided differences mentioned above are calculated relative to
the displayed X-axis. For example, if Vin is the X-axis, then the Probe function
dV(2) is shorthand for d(V(2))/d(Vin). By displaying the variables V(2) and dV(2),
we see the plot of small-signal gain shown in Figure 5.2, which indicates the output
voltage and the small-signal gain (approximately) for the circuit.

Sec. 5.8 Plotting Small-Signal Gain 1

5.B4--eneem e AL —Fememnm- —+-men e +------- Seemnen- —+------- -+
f i

t ,]

=] a

s 1
[.. |

i Y !

i . -~ ¥

; o, : ™ '

l . T i

] o - 1

| e ' o - i
8.8! B -t ‘.
] A i

: ’_./‘ . :

1 L i

i -]

1 - - 1

t Py 1

| L t

] - 1

i " ' i

t ey 1

t ___,«-" 1

d : i

1 [}

i !
5.8+ AHoemmnen oo - —+-momee- onmnnan oeemnee “oneeen- +

2.0 -~{5 -1 -8 8.0y 8.5v 1.0 150 2.
o V(2) = dV(2)
Vin

Figure 5.2 Plot of small-signal gain.

Exercise 5.8.1

Try setting the step size of the DC sweep to a larger value, say .2 volts, and see
how the graph of V(2) and d(V2) changes.

Exercise 5.8.2

Try the previous example and exercise with Gout as a cubic function.

CHAPTER 6

Frequency Response

One of the more popular uses of circuit simulators is to verify the frequency response
of signal filter and control circuits. The frequency response analysis calculates all
of the AC node voltages and branch currents over a swept range of frequencies.
The output of this analysis are the values for (i) the amplitude of node voltages
and device currents, and . (ii)} the relative phase angles of the node voltages and
device currents.

By ‘‘frequency response’’ we actually mean ‘‘small-signal frequency response,”’
where the analysis is done with the assumption that the input signals are small
enough to minimize nonlinear effects. Novice users of PSpice often confuse frequency
response with ‘‘transient response’’ (which we will look at later). They relate frequency
response to a lab-bench setup that sweeps the input of their circuit with an oscillator,
while they look at the output with an oscilloscope. While it is true the oscillator is
providing a waveform with a frequency, often the signal is large enough to induce
nonlinear behavior in the circuit. This type of experiment may be simulated also,
but not by using frequency response analysis.

At the beginning of frequency response (AC) analysis, the DC bias-point for
the simulated circuit is calculated. PSpice uses the same procedure as for the DC
bias-point (OP) analysis. Then the linear component equivalent of the circuit is
‘‘saved’” (this is what is meant by saying the circuit was linearized) and used for
the AC analysis. The laws of Ohm and Kirchhoff apply for AC analysis, too, but
the impedances between nodes are said to be ‘‘complex’’ (having both a ‘‘real’
and ‘‘imaginary’’ component) giving different results from DC analysis.

42

Sec. 6.1 Specifying Input Sources 43

6.1 SPECIFYING INPUT SOURCES

From before, you recall that the independent voltage sources (V device) and current
sources (I device) had the statement form

<name> <node> <node> <value>

where value was the DC voltage or current level, depending on the device type.
Actually, the value part of the statement could be stated in the form

DC <value>

to remind you that the value is a DC bias amount, however PSpice knows that if
you include only the numeric value it is implied that this is the DC value. To
reiterate, the statement -

VIN100.5
is shorthand for
Vin 10 DCO0.5

and both represent the same voltage source.

We cover this because it may only be done for the DC value, but not the
AC value. PSpice can allow ‘‘shorthand’’ for only one of the specifications. A
fuller representation of the input source statement is

<name> <node> <node> <DC value> <AC value>

where if you leave out the DC value, the DC value is set to zero. Likewise for the
AC value; if you leave it off, the AC value is zero. You may even leave off both
values, so that

VIN 1 O

is shorthand for

vin 1 0 DC 0.0 AC 0.0 B.0O

and both represent a “‘zero volt’” source (which we have used before as a current
monitor). You will include values for both for situations where you want to use an
independent source that has both a DC and an AC value (the AC signal rides on a
DC input level).

The <AC value> portion of the statement has the form

AC <magnitude value> <phase value>

where you may leave off the phase value if the phase is zero. The <magnitude
value> is straightforward and is simply the peak amplitude of the AC excitation.
The <phase value> is the offset phase you want to have for this source, and the

44 , Frequency Response Chap. 6

offset amount is relative to ‘‘zero phase.”” This may seem excessively general for
most circuits where the output phase is already relative to the input phase, so there
is usually no need to shift the input phase. However, PSpice can deal with multiple
input sources of differing magnitudes and relative phases, so you may need to
shift phase for a more complicated circuit. ‘

Note that, since the circuit has already been linearized for this analysis, the
excitation level you choose is arbitrary as the levels calculated for the rest of the
circuit will change in proportion to the input. For this reason we normally set
the input magnitude to unity, so that all of the calculated levels represent ‘‘gain.”’

6.2 THE AC STATEMENT

The *“.AC”’ statement specifies the frequency values used during the frequency
response analysis. The statement says only which frequencies are used and all of
the independent sources’ AC values will be set to these frequencies. Usually
there is only one source that has a non-zero AC value, and it becomes the input
source of AC signal, but PSpice is not limited to just one AC signal source.

The frequency sweep comes in three types: linear, octave, and decade. Their
syntax forms are similar. The statement

.AC LIN <points value> <begin value> <end value>

defines a linear frequency sweep, with <points value> specifying the number of
points in the sweep starting at <begin value> frequency and finishing at <end
value> frequency. The statement

AC OCT <points value> <begin value> <end value>

defines a logarithmic frequency sweep, with <points value> specifying the number
of points per octave (a twofold increase in frequency) in the sweep starting at
<begin value> frequency and finishing at <\end value> frequency. The statement

.AC DEC <points value> <begin value> <end value>

defines a logarithmic frequency sweep, with <points value> specifying the number
of points per decade (a tenfold increase in frequency) in the sweep starting at <begin
value> frequency and finishing at <end value> frequency.

6.3 PRINT AND PLOT OUTPUT

Output from AC analysis may be generated by .PRINT or .PLOT statements, just
as in DC analysis. In either case the output is organized by the frequency at which
the calculations were made. The statement forms are

Sec. 6.4 Graphics: Bode Plots 45
.PRINT AC <output value> . . .

and |
.PLOT AC <output value> . . .

Each <output value> entry becomes a column in the table output by the .PRINT
statement, or a curve in the plot output by the .PLOT statement. The output values
you can print/plot are node voltages and device currents (which also means source
currents, as a source is also a device) with some special considerations for AC
analysis. Node voltages and device currents may be specified as magnitude, phase,
real, or imaginary, plus some functions, by adding a suffix to *‘V’’ (voltage magnitude)
or “‘I’’ (current magnitude):

(no suffix) for magnitude
M for magnitude
DB for magnitude in decibels: 20- log(value)
P for phase
G . for group delay (not in SPICE)
R for real part
1 for imaginary part
So, for example:
.PRINT AC V(7) prints the voltage magnitude at node 7
.PRINT AC VP(7) prints the voltage phase at node 7

.PRINT AC IR(R1) prints the real part of the current through R1
You may print several values in one table, and mix voltages and currents; for
example,

PRINT AC V(3) VP(4) li(R2)

Usually you will want to print the analysis frequency in the first column to simplify
finding results in the table, so PSpice does this for you; the first column, which
comes before the columns you specify, always contains the value of the analysis
frequency. '

6.4 GRAPHICS: BODE PLOTS

Using Probe with AC analysis is identical to what we did before with the DC
sweep; just include a .PROBE statement to the circuit file. Let’s try a small filter
circuit to explore what kind of results we can get out of the simulator.

This circuit is a double-pole, low-pass LC-filter circuit. The only unusual
feature about this circuit is that we have split the input resistance into several sections.

46

Frequency Response

G) | .
@ ém mH

©® ®

®

1000
10 mH

1uF

)
+—

500 25Q

§ 2
EmmH EmmH

1uF (:>—'1uF
T |

T1,4F
© —

Q=.5

{

Q=1

\;_T_d/

L.l__/

Q=2 Q=4

Figure 6.1 Schematic of double-pole LC circuit example.

Chap. 6

This will allow us to investigate the response of the circuit with several values of
input resistance, all in one simulation. The equivalent circuit file is

Four double-pole,
VIN 1 0 AC &
*Q:.S
Rl 1 2 200
Ll 2 3 10mH
Ci 3 0 LuF

* =

Re 1 4 100
L2 4 5 10mH
c2 5 0 1luFr
*Q:

R3 1 & 50

L3 & 7 10mH
c3 7 0 1uF
*Q:

R4 1 8 25

L4 8 9 10mH
C4 9 0 1uF

.AC DEC 100 100hz 10Khz

.PROBE
.END

low-pass, LC-filters

Note that the input level selected for the AC source is 1 volt. Since frequency
response analysis is a small-signal analysis, this simplifies looking at the ratio of
output response to input response. If the input equals 1, there is no need to literally
calculate the ratio since the output value is the ratio.

Sec. 6.4 Graphics: Bode Plots 47

The circuit values were selected to have a resonant frequency in the audio
range and different quality factor *‘Q’’ for each circuit section. Displaying our
waveforms:

vm(3) is the magnitude response for Q = 3
vm(S) is the magnitude response for Q = 1
vm(7) is the magnitude response for Q = 2
vm(9) is the magnitude response for Q = 4

B s ST E L ST T AR &

o UH(3) = UN(G) = UM(?) + UN(9)
Frequency

Figure 6.2 Plot of magnitude response.

We may display phases to show the phase response of the filter for different
values of Q:

vp(3) is the phase response for Q = 3

vp(5) is the phase response for Q = 1

vp(7) is the phase response for Q = 2

vp(9) is the phase response for Q = 4

Since response is the ratio of output to input, you can look at the individual
responses of a complicated filter chain this way. Probe will do the division for
you, which is a function you rarely find on an oscilloscope. Furthermore, if you
were displaying response in decibels, then you need only to subtract decibel level
of the input from the decibel level of the output. For example, if you had a two-
stage filter with stage ‘‘A’’ feeding stage ‘‘B,’’ then the response of stage ‘B’ is

db(v(By)) — db(v(A))

48 Frequency Response Chap. 6

. :
' i
| |
_450;'- .. -%.
~o8*| |
+ ot
| |
_135.'i' ~o ‘i-
! - !
i e '
| T
! - : - —
B T s T grommmmme il
166H 3004 1.8KH 3.8k 16KH

o VP(3) = VP(5) - UP(?) = UP(9)

Frequency

Figure 6.3 Plot of phase response.

A similar technique works for displaying phase angles. In this case you merely
subtract the input phase angle from the output phase angle. Using the previous
example of the two-stage filter, the phase response of stage ‘B’ is

vp(Bo) — vp(Ao)

6.5 PLOTTING GROUP DELAY

An important characteristic of a filter, or signal processing circuit, is its phase
response, which is related to the distortion of the signal’s waveform (shape) as it
passes through the filter. (The phase response of the filter also demonstrates a link
between frequency analysis and transient [time domain] analysis.) A circuit can
maintain the wave-shape of a signal if the phase shift of each frequency component
of the spectrum of the signal is a linear function of frequency. This means the
circuit has uniform, or flat, delay; the signal is shifted only in time but is otherwise
unchanged.

If the phase shift is a linear function of frequency, then its derivative with
respect to frequency should be constant. As it happens, the formula we just described

—dphase/dfrequency

is also the delay time through the circuit for each frequency component. In the
realm of modulated transmission, this is the delay time of the components in
the envelope of a modulated carrier, so the delay is called “‘envelope delay.”” In

Sec. 6.6 Complex Values 49

the realm of data transmission where the signals are pulses, this is the delay time
for groups of pulses, so the delay is called ‘‘group delay.”” In either case the integrity
of the transmission may depend on the variation in the delay time.

Probe will calculate group delay by using phase and frequency differences.
So long as the group delay is not changing rapidly between each frequency increment
in the analysis the error of this technique will remain small. We may display group
delay to show the response of the filter for different values of Q:

vg(3) is the group delay for Q = 3
vg(5) is the group delay for Q = 1
vg(7) is the group delay for Q = 2
vg(9) is the group delay for Q = 4

T LT L ST TEE R EOCEETEEE PR TR +
60Bust i ot
| |
4Bus ! - l
B 4
| i
] 4 1
i {
; : :
)]
| |
Bugt-----mmmmmmme- S T TETEEPE RO PR Frrr it
168h 18kh

a UG(3) = UG(S) - VG(7) = UG(D)

Frequency

Figure 6.4 Plot of group delay.

Exercise 6.5.1

Develop the formula that Probe uses for calculating group delay for output voltage.
(Hint: use the derivative of the phase of the output voltage) Display both plots to
check your formula.

6.6 COMPLEX VALUES

When using frequency analysis, all of the calculated voltages and currents are complex
values. That is, these quantities are expressed as complex numbers, which have
both a real and imaginary component, not just scalar value. You may treat (mathemat-

50 Frequency Response Chap. 6

ically) the values in Probe the same way you would treat complex numbers (some
of those things you learned in math class might actually be useful, after all). Let’s
review the basics of manipulating complex values. .

Suppose we have a complex number, ‘‘A,”” which is a combination of two
real numbers, ‘‘a’’ and ‘‘b,”’ by the formula

A=a+b-i

where ‘i’ is an imaginary quantity (equal to the square root of —1). The absolute
value, or ‘“‘modulus’’ (magnitude), of A is

|A| = (a% + b?)12
and the angle (phase) of A is
/A = tan"}(bla)
Using the magnitude and phase of A, we may respecify a complex value as
A=a+bi=|AlA

where e is Euler’s number (approximately 2.71828). This is another transformation
available in complex math that we will take advantage of.

So, in Probe, when you call for the magnitude, or phase, of a voltage you
are displaying the absolute value and angle of the complex quantity.

VM(5) is the magnitude of the voltage at node 5
V(5) is also the magnitude of the voltage, for convenience
VP(5) is the phase of the voltage at node 5

If we have two complex values
A=a+b-i
B=c¢+d-i
you may remember that the addition formula for complex numbers is
A+B=(@G@+bi)+(c+di)=(+c)+ (b+d)i

This is the technique Probe uses when you add, or subtract, complex voltages or
currents.
The multiplication formula is

A-B=(-c—b-d) +(b-c+a-d-i=]|A]|B|-£L"H
and the division formula is
A/B = (a-c + b-dy/(c® + d) + (b-c — a-d)-i/(c? + d}) = |A/|B|- BB

These techniques are also in Probe for multiplying and dividing complex voltages
or currents. All of these formulas become handy when you want the equations like
V = IR, but V and I are complex quantities. We’ll try this in the next section.

Sec. 6.7 Plotting Input Impedance 51
6.7 PLOTTING INPUT IMPEDANCE

Input impedance is, quite often, an important circuit parameter. Often it will vary
with frequency. Without going into the problem of designing required impedance
levels, let’s look at how PSpice may be used to simulate and display input impedance.

Impedance is similar to resistance in that it.is a coefficient in the observed
change in voltage and current, so impedance is a complex resistance. From Ohm’s
law we know that R = V/I. In a similar fashion, if V is a complex voltage

V=a+ib= VX

(where [V| and /V are the magnitude and phase angle of V) and I is a complex
current

I=c+i-d=]|I|e4
(where |I| and /I are the magnitude and phase angle of I), then impedance is
Z=VlI=(@+ib)c+id)=(@ac+b-d) .
+i-(brc—a-d)P = (|V[/|IeX -2
By using this result we may directly plot the magnitude, phase, real part, or imaginary
part of input or output impedance. Using the same LC-filter circuit from before,
we can plot input impedance without even rerunning the simulation. All of the

data has already been calculated from the simulations for output response. The
magnitude of the input impedance may be plotted using:

v(1)i(rl) is |Z] for Q = }
v(1)/i(r2) is |Z| for Q = 1
v(1)/i(r3) is |Z}| for Q = 2
v(1)/i(r4) is |Z}| for Q = 4

See Fig. 6.5. Note that v(1) is the magnitude of the input voltage, which was set
to a constant value which could have been used in the formula.
Note that the Y-axis was set to a logarithmic scale. This has the same effect as
displaying, say, output response in decibels (as in a ‘‘Bode”’ plot). You can see
the “‘peaking’’ of the input impedance for Q > 1, and the asymptotic trend of
impedance as the frequency tends toward low or high frequencies.

The phase angle of the input impedance may be plotted using:

~ip(rl) is /Z; forQ =}
—ip(r2) is /Z; for Q = 1
—ip(t3) is /Z; for Q = 2
—ip(rd) is /Z; for Q = 4

See Fig. 6.6. In this case, we ‘‘cheat’” by knowing that the phase angle of the
input voltage is zero.

52

Frequency Response

YOO S +

i -#

! # |

i]

! :

: i

i :

100 !

w:» .

: :

: - !

: = i

184 <= - oo mmmmm e prmmommmmnme e pommmmmem e frmmmmmmm e +

166h 306h 1.8Kh 3.6%h 16Kh
o WCL)/INRL) = WCL/INCR) - UNC1)/INCR3) » WH(1)/INCR4)D

Frequency

Figure 6.5 Plot of |Zin|.

9%.8°

£

-58.8°

.[-u—---—+—----—-—+—-—-—---—+----+

%

168H J0eH 1.8KH -
o -IP(R1) » -IP(R2) - -IP(R3) + -IP(R4)

Frequency

Figure 6.6 Plot of / Zin.

Chap. 6

Sec. 6.7 Plotting Input Impedance 53

Exercise 6.7.1

Develop a complete formula for the phase of an impedance. Use the real and imaginary
parts of the voltage across the impedance and the current flowing through the impedance.

Exercise 6.7.2

Using the LC-filter circuit simulation, display Probe output for the following values:
VI(1) and VI(2). What does this tell you about the input impedance? Now, after
clearing the display, plot these values: I(R1), IR(R1), and II(R1). Where does the
imaginary part of the input current cross the X-axis? What is significant about this
frequency value? Try plotting the formula for the magnitude of the input current using
the real and imaginary parts (only).

The real part of the input impedance may be plotted using:
v(1)-ir(r1)/(i(r1) - i(r1)) is re(Z;) for Q = 3
v(1)-ir(r2)/(i(r2) -i(r2)) is re(Z;) for Q = 1
v(1)-ir(r3)/(i(r3) - i(r3)) is re(Z;) for Q = 2
v(1)-ir(rd)/(i(r4)-i(r4)) is re(Z;) for Q = 4

This time we ‘‘cheat’’ by knowing the input voltage source has no imaginary part

from
Zero.

the AC specification, which is another way of saying that its phase angle is

ml fmmmecrcccnscmanan O S N +
|
! .
1
1
1
|
1
|
I
I
|

m-k:’ 0 O =}
]
1

S
1
§ 1
{ '
1 ¢
1 t
1 '
|]
| '

108—= . . » +
1]
: '
i '
i]
1 |
OO U Uy g U U |
! “1
{ t
i N .]
T + ~# * 1
i t
1 t

B------mme - B Rl R o mmeseemmce—an—— fmmemeemccccce———— +

188h 308h 1.8Xh 3.8kh 18Kk
o IR(R1)/CI(R1)=I(R1)) = IR(R2)/(1(R2)%I(R2)) - IR(R3)/(I(R3)%I(R3))
+ IR(R4}/C1(R4)*I(R4))
Frequency

Figure 6.7 Plot of re(Zin).

54 Frequency Response Chap. 6

Exercise 6.7.3

Develop a complete formula for the real part of the input impedance. In this case,
the magnitude and phase of the input voltage are unknown.

The imaginary part of the input impedance may be plotted using:
—ii(r1)/(i(r1) - i(x])) is im(Z;) for Q = }
—11(r2)/(i(r2) - i(r2)) is im(Z;) for Q = 1
—1ii(r3)/(i(r3) - i(r3)) is im(Z;) for Q@ = 2
—1i(r4)/(i(r4) - i(r4)) is im(Z;) for Q = 4

Again, we ‘‘cheat’” by knowing the input voltage source has no imaginary part.
Furthermore, we also realize that the real part of the input voltage is unity.

7

B ILLCTER PP oo nean drommmemmmmemaaae +

I —

b

1084 3004 1.6K4 3.0%H 1034
a ~II(R1/(I(R1*1(R1)) = -II(R2)/(I(R2)*I1(R2}) - -I1(R3)/(1(R3)=1(R3))
+ ~11(R4)/(I1(R4)=I(R4))

Frequency

Figure 6.8 Plot of im(Zin).

Exercise 6.7.4

Develop a complete formula for the imaginary part of the input impedance. As before,
the magnitude and phase of the input voltage are unknown.

Exercise 6.7.5

You may have noticed that all of the plots for the imaginary part of the input impedance
were the same. This means that the complex impedance part of the circuit was unchanged,

Sec. 6.8 Plotting Output Impedance 55

regardless of which Q values we were investigating. Reimplement the Q = 4 circuits
with real input impedance of 50 ohms and the same resonant frequency as the example.
Then, plot the imaginary parts of the input impedance. Compare it to the example
forQ = 2.

6.8 PLOTTING OUTPUT IMPEDANCE

Output impedance is, quite often, another important circuit parameter. We can use
PSpice to simulate voltages and currents and then use Probe to display formulations
for output impedance, just as we did previously for input impedance. You can
even use these techniques for deriving the impedance levels internal to circuits, so
long as you are careful to include the correct voltages and currents.

We were lucky, in the previous example, that one simulation run provided
everything we needed for output response and a variety of ways of looking at
input impedance. Applying a voltage source to the input was necessary to excite
the circuit for the output response simulation, and accordingly supplied current to
the circuit from which the impedance calculations were done. To look at output
impedance we need to have current flowing at the output terminals to calculate
impedance levels.

For the LC-filter circuit, the input impedance calculations assumed that the
output was not connected to a load. This is the same as saying the load had “‘infinite”’
impedance. The output impedance of the circuit will assume that the input is connected
to a voltage source, which is to say that the input will have a load of zero impedance
(the input is, for frequency calculations, *‘shorted’’). To make the appropriate changes
to our circuit file we will need to set the input voltage to zero

Vinu 0O

and apply some current generators at the output of each filter section

IL 03 AC1
I205AC1
I3 07 AC1)
I409AC 1

Note that the current sources are connected so that positive current flows into the
output node of the LC-filter. This was done so the phasing of the current will be
intuitively correct when we display the output impedance. Now, we rerun the simula-
tion.

The formulas we developed for input impedance are the same for output im-
pedance, although the observations about which components of the voltage source
are zero or unity now apply to the current source. The magnitude of the output
impedance may be plotted using:

56 Frequency Response Chap. 6

v(3)/i(il) is |Zo| for Q = %
v(S)i(i2) is |Zo| for Q = 1
v(7)/i(i3) is |Z| for Q = 2
v(9)/i(id) is |Zy| for Q = 4

Note that i(il), i(i2), i(i3), and i(i4) are the magnitude of the driving current,
which was set to a constant value that could have been used in the formula.

1664 386H 1.6k 3.8 16%H
o UME3)/INCIL) = UNCS)ZINCIZ) = WM(7)/INCI3) + UM(9)/INCI4)
Frequency

Figure 6.9 Plot of |Zout|.

Note that the Y-axis was set to a logarithmic scale. This has the same effect as
displaying, say, output response in decibels. You can see the ‘‘peaking’’ of the
output impedance for Q > 1, and the asymptotic trend of impedance as the frequency
tends toward low or high frequencies.

The phase angle of the output impedance may be plotted using:

vp(3) is /Z, for Q = 3
vp(5) is [Zo for Q = 1
vp(7) is /Z, for Q = 2
vp(9) is /Z, for Q = 4

In this case, we ‘‘cheat’’ by knowing that the phase angle of the output current is
zero (from the AC statement).

Sec. 6.8 Plotting Output Impedance 57

o UP(3) = UP(S) = UP(7) « UP(9)
Frequency

Figure 6.10 Plot of / Zout.

The real part of the output impedance may be plotted using:
vr(3)/(i(i1)-i(i1)) is re(Zy) for Q = %
vr(5)/(i(12) 1(i2)) is re(Zy) for Q = 1
vr(7)/(i(i3) - i(i3)) is re(Z;) for Q = 2
vr(9)/(1(14)-i(i4)) is re(Z,) for Q = 4

H
i
|
i
i
|
4
a
i
i
,5
. ’ +
1864 3884 1.8KH 3.88H 18KH
a VRV (1(11)=1(11)) = VR(S)/(1C(12)%1(12)) - VR(7)/(1(13)*1(13))
+ UR(9)/(1(14)=1(14)) Frequency

Figure 6.11 Plot of re(Zout).

58 Frequency Response Chap. 6

Again we ‘‘cheat’” by knowing the driving current source has no imaginary part,
which is another way of saying that its phase angle is zero.

Exercise 6.8.1

Develop a complete formula for the real part of the output impedance. In this case,
the magnitude and phase of the output voltage are unknown.

The imaginary part of the output impedance may be plotted using:
vi@3)/(i(i1)-i(i1)) is im(Zy) for Q = %
vi(§)/(i(i2) - i(i2)) is im(Zy) for Q = 1
vi(7)/(i(i3) - 1(i3)) is im(Z,) for Q = 2
vi(9)/(1(i4) - 1(i4)) is im(Z,) for Q = 4

2o pommemmeeaacaene SN frmmmmeem e +
| : ' ' :
i . . 1
t -, i
' . . . H
] H)
' : : :

o CER SRR
f . ;
1]
1 T . 1
1 1
1 1
] : . I
.}D—_—_‘“—mq__ I t /"_"‘
: - N 2 "

mi XH_‘“D N /";9’57 . E

- -, o~
,+ N |
1 1
| ' ‘
: . +)
i : i

. S S — SN S oo +
1684 388H 1.6KH 3.6KH 18KH

o VI (1 (11)#1(11)) = VI(S)/(I(12)%1(12)} = VE(?)/(1(13)=I(I3))
= V1(9)/(1(14)%1(14))
Frequency

Figure 6.12 Plot of im(Zout).

Again, we ‘“‘cheat’” by knowing the driving current source has no imaginary part.
Also, we take advantage of the real part of the driving current being unity.

Exercise 6.8.2

Develop a complete formula for the imaginary part of the output impedance. As before,
the magnitude and phase of the output voltage are unknown.

Sec. 6.9 Plotting Loop Gain 59

6.9 PLOTTING LOOP GAIN

Inspecting the open-loop gain of circuits with high-gain components is a difficult
task. You might be tempted to open the loop to make measurements, but this will
probably destroy the DC bias of the circuit. Opening the loop might also disconnect
an internal load impedance and affect your measurements. What we need is a way
to make these measurements without opening the loop or changing the internal
loading of the circuit.

In developing this technique we will start with a hypothetical circuit. This
circuit will be set up to make these measurements without introducing any problems.
Then we will modify the formulas to work with “‘real’’ circuits. But first, let us
review some terms.

/

Ut

Figure 6.13 Schematic of system with feedback.

In the diagram of the system with feedback, the following signals may be calculated
by inspection

uy = A-u,
u, = u; — K-y

(=]

where u;, 4y, and u, are the ““input,”’ “‘output,”” and ‘‘error’’ signals, respectively.
Further manipulation of these formulas yields

ug=A-u; — A-K-u,
u, = u/(1 + A-K)
so that system gain is
G=uu;=A(1+A-K)y=A/(1+T)=WK)-T/(1 + T)
and the ‘‘open-loop gain,’’ or ‘‘return ratio,”’ is
T =udu, = A-K

The system’s relative stability can be inspected in an open-loop configuration. The
loop is opened in the feedback path, and a ‘‘test’”” signal is injected. Then the
resulting feedback signal, opposite the injection point, is compared to the test signal.
The feedback signal is inspected for one full cycle of phase shift (actually only

60 Frequency Response Chap. 6

180° as the feedback is subtracted). If the open-loop gain (the ratio of feedback
signal to the test signal) is one, or greater, then the loop is unstable since it can
supply its own input. The amount of gain, relative to unity, at 180° phase shift is
called the open-loop ‘‘gain margin.”’ Likewise, the amount of phase difference
from 180°, when the open-loop gain is unity, is called the open-loop ‘phase margin.”’

Actually this analysis is true even if the loop is broken in the forward path,
but it seems easier to describe as though the feedback path were broken. Now,
having said that, we will imagine that we have ‘‘broken’’ the loop somewhere
inside the circuit. It doesn’t matter where, just as long as the break is in some part
of the loop. To do this, we will imagine that some part of the signal path is a
controlled-current source connected to an impedance (for example, this may be a
transistor with a load resistance) as shown in Figure 6.14(a).

Then we break the loop, as shown in Figure 6.14(b), being careful to duplicate
the load impedance seen by the current source. Now we inject a current into the
original load impedance, which is part of the original loop, as the test signal. The
return signal is current in the duplicated load impedance. The ratio of the two
signals is called ‘‘open-loop current gain,”’ or Ti, where

Ti = iy/i,
Now comes part of the trick. It is not necessary to open the loop to inject the test
signal. As shown in Figure 6.14(c), if a current is injected into the signal path it
splits into the test signal and return signal of Figure 6.14(b). Furthermore, the load
impedance does not need to be duplicated, since the loop is not broken and the
current source has infinite impedance.

Similarly, we can develop the same technique using voltages instead of currents.

663

@)

Figure 6.14 Schematics showing development of open-loop measurements.

Sec. 6.9 Plotting Loop Gain 61

As shown in Figure 6.14(d), a voltage source is inserted in the loop to inject a
signal. The resulting measurement of the voltage across the load impedance and
the controlled-voltage source yields a ratio called the ‘‘open-loop voltage gain,”’
or Tv, where
Tv = v /vy

Since we were able to choose ideal points to break the loop, these measured loop
gains are the open-loop gain of the system, that is T = Ti for the current-source
version, and T = Tv for the voltage-source version.

Now we tackle a more ‘‘real’’ circuit, as our example so far assumed controlled
sources that had no internal impedance the way a real transistor, or real opamp,
does. We can account for this by use of superposition.

In the previous case the injection was done as shown in Figure 6.15(a), but
in this case we have two new currents, as shown in Figure 6.15(b), and

i, =M-i; + iy 2y/z,
where M is the rest of the loop’s gain. The open-loop current ratio that we measure
is, then
iyiy=Ti=M+ z//z,

and the open-loop gain is

T = iy/i,

T =M-i/(iy: 21/, + i)

T=M™+ zy/z, — 2)/z)/(1 + z,/2,)

T =(Ti— zy/z,)/((1 + z,/z,)

JOH H0E

(a) (b)

Figure 6.15 Schematics showing open-loop measurements with internal impedances.

62 Frequency Response Chap. 6

By similar means, we might make a non-ideal measurement of the open-loop voltage
ratio, as shown in Figure 6.15(c), with the result

T = (Tv — zy/z))/(1 + z,/z;)

Of course, this begs the question of what the circuit impedances are so we may
calculate T. By inspection, we can see that

Ti=Tif z,/z, << 1
and

Tv=Tif z,/2; << 1

but, if we were to measure both Ti and Tv, then we would have two equations
with two unknowns. Eliminating the ratio, z,/z,, yields

Break loop here

—
.

10KQ
1.038uF 1KQ
= 7/
(@
1KQ 50Q
+ > ﬁ —AN\—— out
in § i 15.92uF t
(b)

Figure 6.16 Schematics for circuit example of open-loop gain measurements.

Sec. 6.9 Plotting Loop Gain 63

(T+ 1) =(Ti+ D}j(Tv+1)
where || means ‘‘parallel combination,”” for example

x||y = 1(l/x + 1/y)

This says that the lower of the two measurements, Ti or Tv, dominates the value
of T, the open-loop gain. Another way to restate the formula for T is

T=(Ti-Tv— D/(Ti + Tv + 2)

Let’s try to measure open-loop gain in a relatively simple circuit. Figure 6.16(a)
shows the circuit we will measure, breaking into the loop at the output of the
opamp.

The simplified model of the opamp, shown in Figure 6.16(b), will be used
for this example. The subcircuit definition for the opamp is

* nideal" op-amp with 100K gain and one-pole roll-off at 10Hz

.subckt opamp non inv out
rin non inv 100K
egain 1 O (non, inv) 100K
ropen 1 2 1K
copen & 0 15.92u
eout 3 0 (2,0) 1
rout 3 out S0

.ends

Since we will want two copies of the entire circuit we are measuring, let’s put the
circuit in a subcircuit. This subcircuit will have only two nodes, which are at the
place where we are breaking the loop.

* example circuit
.subckt test in out
vin 1 0 0 ; zero input
X3 L 2 in opamp
rl out 2 10K

re 2 0 1K
cl 2 0 .038u
.ends

Finally, there is the rest of the circuit.

64 Frequency Response Chap. 6
Open-loop gain measurement

X1 Til Tio test ; this copy for Ti measurements
X2 Tvi Tvo test ; this copy for Tv measurements

* perform Ti measurements

iz 0 » AC 1} ; "test" current generator
v_ix 1 Tio O ; sense Ix

v_1iy 1 Tii-0 ; sense Iy

h_ix ix 0 v_ix 1 ; convert Ix to a voltage
r_ix ix D 16

h_iy i1y 0 v_iy 1 ; convert Iy to a voltage
r iy iy 0 16

* perform Tv measurements

vz Tvo Tvi AC 1 ; '"test'' voltage generator
e vx vx 0 Tvo 0 1 ; copy Vx

r vx vx 0 16

e vy vy 0 0 Tvi 1 ; copy Vy

r vy vy 0 1G

After running an AC analysis simulation, we view the results.

First we look at the magnitude of Ti and Tv. As we would expect, Tv dominates
—that is, Tv is of smaller magnitude and will control the value of (Ti + 1)||
(Tv + 1)—since the input impedance of the feedback circuit is much greater than

S

£
.;f

.\\ .

! L !
5 ™~ I .’
H .\\. . i
i R [] .]
' ‘ S~ i
i . . 5
H . . i
. T e — fmmmmmeaee e frmmnean T
1.64 164 166H 1.8KH 18KH 168KH 1.0MH
o db(VU(Iy)V(Ix)) = db(V(Uy)V(Ux))
Frequency

Figure 6.17 Plot of open-loop gain (current gain and voltage gain).

Sec. 6.9 Plotting Loop Gain 65

the output impedance of the opamp. From this we gain the insight that even though
we may be able to calculate T from Ti and Tv, it is better to have Ti or Tv
dominate so that no calculation is necessary. This means that we should try to
break the loop where the return side is a relatively ideal current, or voltage, source.
Looking at Tv more closely, we can put up another plot of the phase of Tv.
The phase margin for the system will be the phase at unity loop-gain, plus 180°.

L Aommmmmeee Hoemmmmmne +mmmmmnees romooneeen
: T , M
s o s
{) T -) i
E TN :
. A < T)

e ™. «
AN ' :
Lo .
! AN =
: “a :
H e |
'm.&!‘. . . -"“?-—..\‘H . . .li.
H ey]
' e i
! AN i
1 A]
] ™. i
! - :
-199.8+---------- mmmmm e e +-- ——t- S
i.84 164 1684 1.8 1854 168XH 1.0

o dbUUy)U(Ux)) = Up(Uy)-UpUx)

Frequency

Figure 6.18 Plot of open-loop voltage gain (magnitude and phase).

Notice that we may break into the loop of this example circuit elsewhere, or try
another circuit, just by changing the description of the test subcircuit.

CHAPTER 7

Feedback Control Analysis

o

As it happens, the first applications of feedback control theory were in electrical
systems, in contrast to earlier mechanical systems which were often designed using
Routh’s method as the only analytical tool. During the early days of electrical and
electronic systems a great amount of effort was spent on analytical techniques for
these systems. The result was a variety of graphical tools for analyzing the frequency
response of systems and synthesizing stable control systems, both electrical and
mechanical. The remarkable outcome of these tools is the quick, graphic analysis
of transient (time-domain) response and stability from frequency response. Moreover,
that closed-loop frequency response can be deduced from open-loop frequency re-
sponse.

Most physical systems, or ‘‘plants’’ (a control-theory idiom), may be analyzed
by PSpice by creating an electrical analog for the controlling equations: force translates
into current, mass translates into capacitance, and so forth. Then the frequency
response of the system (linear displacement, rotation, etc.) may be calculated using
PSpice’s frequency response analysis. As mentioned in the introduction to this book,
PSPice is not concerned that your electrical analog is not even a normal electronic
circuit. By using this technique of ‘‘analysis by analogy’” you may even directly

Xl

convert system equations in ‘‘s’’ to electrical equivalents for PSpice.

7.1 DYNAMIC PLANT EXAMPLE

Let us consider a general example of a linear system with feedback control, as
shown in Figure 7.1. :
This system has a ‘‘dynamic plant’”” and simple feedback; it has (i) an input

66

Sec. 7.1 Dynamic Plant Example 67

+
In A/E\ggﬁnm ol KeGE) . Out

Figure 7.1 Schematic of generalized feedback system.

signal, X, (ii) an error signal, E, (iii) a ‘‘plant’” function, K- G(s), which separates
the linear gain from the complex part of the plant, and (iv) an output signal, Y.

Of course, when the loop is open the error signal is the same as the input
signal. Functions of these signals are calculated to create the various plots in this
chapter; for example:

| Y|/|X| = system response magnitude

/Y — /X = system phase response

Let us look at an example circuit and see what feedback system analysis plots
result from its frequency response.

Figure 7.2 shows a more complicated example of the two- pole filter we analyzed
in Chapter 6 on frequency response. The circuit file that describes this circuit is

¢ tandem, double-pole, low-pass, LC-filters
Vin 1 0 AC L

Rin 1 0 1K

Ein in O poly(E) (,0) (&,0) 020
*Q=4

Rl in 2 25

L1 2 3 10mH

Ck 3 0 JuF

*Q=4 @ ' frequency

E2 40301

R2 4 S 25

L2 5 b S50mH

C2d & 0 SuF

.AC DEC 100 100hz 1L0Khz

.PROBE

.END

® ® ® ®

@ V = V(1) - V() = V = V(@) ,|\

Figure 7.2 Schematic of tandem LC circuit with gain.

68 Feedback Control Analysis Chap. 7

You will notice that we have placed, in series, two of the Q = 4 RLC filter sections
we analyzed earlier. We have also used an E-device to serve as an ideal difference
amplifier, which lets us change the gain easily and choose to close the feedback
loop (that is, if the gain from the feedback input is zero then the circuit is operating
“‘open-loop’’). This circuit does not correspond to any useful circuit or physical
system analogy. However, we can still look at the system response.

7.2 BODE PLOTS

An important theorem by H. W. Bode deals with linear systems with constant
“coefficients whose poles and zeros are all in the left-half of the s-plane (minimum-
phase systems). This theorem holds that, for any minimum-phase system, the phase-
angle part of the frequency response is uniquely related to the magnitude part.
This allows the phase response of a circuit to be deduced from the magnitude
response, and vice versa. Moreover, entire systems of coupled minimum-phase sec-
tions could be analyzed by a graphical technique that embodies Bode’s theorem.
This technique was extremely useful in electronic circuits, where complex systems
can be easily built but are potentially more difficult to analyze. The graphical technique
used what came to be called ‘‘Bode plots.”’

Bode plots are graphs of the magnitude and phase response of the circuit
versus frequency of sinusoidal excitation (that is, small-signal analysis, or what
SPICE calls frequency response). We have seen these plots in the previous chapter,
The simplicity of construction for these plots, when done by hand, is due to the

2884 R AR PR dommmmecenomeeaeae +
i i

5 o //_\\\ ' 5
B.ﬂf-m CotN . 4;

i T E

; BN 5

i) N H

! i

(. !

i i
.8} SR 4
) [}

: . :

i i

i . i

| i

a ' -:
T S S —— e e +
166H 3686H 1.0KH 3.8¥H 18KH

o db(VM(6)/UN(in))
Frequency

Figure 7.3 Plot of system’s open-loop magnitude response (in decibels).

Sec. 7.2 Bode Plots 69

Y e ommmmmmmenaanna. e mmmmmemmrmmo oo +
t . . i
' “u -)
! . . ;
a | =
-281) '
1 . .. 1
! . L i
_430 .)]
i , T
-6&«? ---------------- ommme oo e oo +—--------------:"'-‘4
1664 306H 1.6%H 3.6K4 16KH
o db(UM(3)/UNCin)) = db(UM(6)/UN(3))
Frequency

Figure 7.4 Plot of the individual section’s magnitude response (in decibels).

frequency scale (which is along the X-axis) being logarithmic. Phase angle is plotted
linearly along the Y-axis, but magnitude is plotted with a logarithmic scale along
the Y-axis. This setup allows ratios of magnitude and ratios of frequency to have
constant displacement on the graph. . ‘

The ease in constructing Bode plots made them popular and standard. PSpice
will create them for you either by using the .PLOT statement or, more usefully,
by using Probe graphics. Now, after running PSpice on this circuit we may run
Probe to look at some Bode plots.

See ffigure 7.3. This plot shows the open-loop magnitude response of the
system. We can see that system response is actually the product of its components:
a gain section, a lower-frequency two-pole filter, and a higher-frequency two-pole
filler. We may plot these responses separately, as shown in Figure 7.4.

Phase plots are also simple, as shown in Figure 7.5.

The total phase is the sum of the phase of the individual sections, as shown
in Figure 7.6.

These examples show what made the Bode plot technique so useful and popular:
the ease with which graphs of the response of each section’s circuitry could be
constructed and then combined to produce the system response graph. Of course,
this was all being done by hand, but now you can use PSpice.

One of the items not handled well by Bode plots was deducing closed-loop
response from open-loop response. We can resimulate our circuit in the closed-
loop configuration by modifying the statement for the difference amplifier (E-device)
as follows:

70 Feedback Control Analysis Chap. 7
Ein in 0 poly(2) (1,0) (L,0) O 2 O

becomes
Ein in O poly(2) (1,0) (&,0) O & -2

to close the loop. After running PSpice we may compare the open-loop and closed-

- !
| |
_18001:. . "\".l P .i,
i N i
200" i 5
T T 1
s E"\ 5
i "", |
1 i i
- 5 3
m..i. \"\ . T
) " 1
' T i
E S
. A — N U — N +
1084 3064 1.6 3.0KH 16%H

o UP(R)

Frequency

Figure 7.5 Plot of the system’s open-loop phase response.

B e e —— 1

| S —~ 1

E ' \\\ i

a \ \ |

: \ \ :

—oge ! | 5 !
P | ‘ 1
| : \ :

: i \ :

: |

. E E ! i
1%y g +
! \ :

| N N]

! :

' e e :

B [i ST R LR +.-----.T.‘:‘J.---:—-;—-—--—-—-:l‘:-~_-—-—--!ﬁ
1684 30 1.8 3,00 18

o UP(3) = UP(6)-VP(3)
Frequency

Figure 7.6 Plot of the individual section’s phase response.

Sec. 7.2 Bode Plots

n

loop responses. You will notice that the system gain peaks at a new frequency and
is the frequency at which the open-loop response crossed Odb!

L AL EEEEE R LS EEE R R +
! ﬁ |
! ' ' E
i ’ ’ i
é ,JD//'\ /\ ' i
ig—"" . o . 1
8: ’ ./)\ \\ :l
L N r
i O A\ E

—281:, S 1':
i 4 5

Y SE— FE—— SRS VR — H
1864 388H 1.6MH 3.8KH 1684
o = Udb(6)

Figure 7.7 Plot of the system’s open-loop and closed-loop magnitude response

(in decibels).

As you might expect, the phase response of the system has changed as well.

L e Cog T bbb Froroseeemmoaoaemn. +
E \\v: |ii i
:n)I"\ [i E
’im.T . ‘,)\ P -’ . T
! .8 \ :
‘. N i
] "*q_,,__h\ H
-7288* | ’ _}“‘*r.g_x]
t TN +
| ‘
! I
-m.+ \l&\k‘;_;_;_‘_'_‘_f
E i ’
. L e Rt et mfrooven o aaaaas R Rt 4
1064 3964 1.0kH 3.0k 1854
o = UP(6)
Frequency

Figure 7.8 Plot of the system’s open-loop and closed-loop phase response.

72 Feedback Control Analysis Chap. 7

In the next section we will look at another type of plot that does deduce
closed-loop response, from the open-loop response, by merely shifting the origin
of the plot.

7.3 INVERSE-POLAR PLOTS

Another graphical technique, developed by H. Nyquist, uses a polar coordinate
graph to plot system response characteristics. From the mathematics of feedback
systems, we know that the closed-loop system response is

Y/X = K-G(s)/(1 + K-G(s))

The magnitude and phase of this response can be plotted for various frequencies,
as with the Bode plot, if we could plot this using polar coordinates. In this case
the magnitude of the response would be the magnitude of the vector, and the phase
response would be the angle of the vector. Such a plot is quite easy to create with
Probe, since the magnitude and phase of a vector is a function of the real and
imaginary parts of the vector. This is called a ‘“‘polar plot’’ and is created directly
using the VR() and VI() display functions, which we used previously (for instance,
when calculating impedances). By changing the X-axis of the plot to be the real
component of the vector, and then plotting the imaginary component, the polar
plot of the vector is created by using the rectangular components of the vector.

s G PP AT EETRTR R PR SRR EEEREE -t
: :
i ‘ |
W+ . e 1
) /-/ ™ H
i S ’ 5 H
i J:'/) \'\, :
i ! Y H
: ' | H
! { ‘ :
i I :
ot |) i
! Y _/‘ E
' Ay d 1
1 \'w______,__’__ - :
L !
L e ey B EEGRE TP S EaRGEEEEEEEEE et +-mat
-18.8v 5.0 a.8v 5.8y 16.8v
o VI6)
VR(6)

Figure 7.9 Plot of system’s closed-loop response in polar form.

Sec. 7.3 Inverse-polar Plots 73

The only parts missing from the plot are the markers for frequency.
In the feedback system equations, notice that
K-G(s) = Y/E
and that the inverse of the system function, Y/X, is
XY =1U/K:-G(s) + 1
or

XY =E/Y +1

which is very convenient, since E = X when the system is ‘‘open-loop.’’ This
means that the closed-loop response is related to the open-loop response by adding
one, when the response is plotted as in inverse function. This is the utility of the
“‘inverse polar’” plot: the plot of the inverse transfer function is the same for both
open- and closed-loop configurations; only the origin of the plot shifts. Let us try
this with our example circuit.

2.84---------- R fommmm oo dmmemmmmm e 4o B +
: | i
a.a.i. P --_:__._;_,__—.—1*”—.—,—% . é.
| ', |

[} _\ t
-2.8} b i
T s . \ R T

! ﬁ !
-4.8% s i . 1:;
! e E

i T '
6.8 - U — TR —-— TEDE— U S 3
-4.8 -2.8 8.8 2.8 4.0 6.8 8.8

o -VI(6)/(V(6)=V(6))
VR(6)/(U(6)x(6))

Figure 7.10 Plot of system’s open-loop response in inverse polar form.
Using the open-loop version of our circuit file (no feedback in Ein), our input
is unity so the inverse of the output is (using complex arithmetic)
/A = 1/(a + b-i) = @/|AP> — b-i/|A]?
or, the coordinates for 1/Y are
re()/I|Y, —im(Y)|Y|?

74 Feedback Control Analysis Chap. 7

284 —ommmmaeen e 4rmmommmoee s E ERDEECEEE rmmemmeees +
: | i
| . |

a ., B.i. ;-_ P T T 1:,.
i (| | |

-2.8! ' ‘ |

-4.81 . T , Ct
| T |
| "‘-‘-________b !

Y| SETEREE rommmmnnnee fommmmmnenns R — TR e +

~4.8 -2.8 8.8 2.8 4.8 6.8 8.8

o -VI(6)/(¥(6)(6))
UR(6)/(V(6)(6))

Figure 7.11 Plot of system’s closed-loop response in inverse polar form.

Now, we run PSpice again using the closed-loop version of the circuit file. Using
the same display functions as before, the closed-loop response is plotted in Probe
as shown in Figure 7.11.

If you are trying this, you will probably need to adjust the X-axis and Y-axis
ranges, zooming in to the origin, to scale the plots for use and comparison. With
everything adjusted, we notice that the curve is the same and only the origin of
the plot has changed between the open-loop and closed-loop response plots.

Exercise 7.3.1

Check our equations and PSpice: directly evaluate E/Y + 1 in Probe, using complex
arithmetic, and compare the open-loop response to the closed-loop response.

7.4 NICHOLS PLOTS

The Bode plot has the advantage of rapid plotting by hand using asymptote approxima-
tions and multiplying functions together by adding distances on a log scale. The
inverse polar plot is more difficult to assemble by hand, but once plotted shows
both the open-loop and closed-loop response. There is another graphical technique,
developed by N. B. Nichols, which has both features.

The Nichols plot shows both magnitude and phase on the same plot, and is
like a combined Bode plot (in fact, the easiest way to construct, by hand, a Nichols
plot is to first construct a Bode plot and transcribe points to the Nichols plot).

Sec. 74 Nichols Plots 75

204 ------- ESEEEEES —+-eeoee- +meeee- +--mee-- —fomneen- et SEEREE +
| : e T
| Co
i N

—a{r . 1:;
‘ . i :
E T i

-28! ‘ 5
T i t
! / |
! !
48, .T
Y SR Aomeens +eoemen- - +onmmeo- —+----o-- oo 4o +

-468° -388* -258° -208° -158° -168° -50* 8

o Vdb(6)

UP(6)

Figure 7.12 Plot of system’s open-loop response in Nichols form.

Using our example, we obtain the Nichols plot shown in Figure 7.12 by resetting
the X-axis variable to be the phase response of the system.

The Nichols plot technique then uses an overlay plot to transform the open-
loop response into a closed-loop response. This overlay plot is the same (so long
as the plot coordinates are the same) for all system responses and performs the
same job as shifting the origin for the inverse-polar plot.

CHAPTER 8

Noise Analysis

Whenever small signals are amplified or measured, you usually reach a lower limit
of signal that is discernible; this limit is set by spontaneous fluctuations in the
equipment you are using. The spontaneous fluctuations are called ‘‘noise,” since,
if the audio-frequency component of the fluctuating voltage, or current, were amplified
and fed into a loudspeaker, you would hear a hissing noise. This type of fluctuation
extends across all frequencies; for example, in television equipment noise creates
the ‘‘snowy’’ picture.

PSpice can analyze noise by calculating the noise contributions from each
element in the circuit and combining these noise sources with the various transfer
functions in the circuit. You may print or plot (or use Probe) the result of these
calculations to obtain noise response over a range of frequencies, just like the frequency
response analysis.

8.1 NOISE CALCULATIONS

In PSpice, the resistors and semiconductor devices contribute to the noise calculations.
While the semiconductor device noise models are more complicated, we can under-
stand the general idea of noise analysis just by using resistors. In due course the
semiconductor noise models will be explained.

The resistor, in PSpice, generates an equivalent ‘‘thermal noise’’ current in
parallel with the resistor (which is then noiseless). Thermal noise is “white”: its
fluctuations contain equal amounts of all frequency components (which, in human
vision, is white light). Technically, we would say thermal noise has *‘‘constant

76

Sec. 8.2 The .NOISE Statement . 77

spectral density.”’ The random fluctuations are characterized on a statistical basis
using averages so that while the time average of a random fluctuation is zero, its
mean-square average (or variance) has a value. The level of the resistor mean-
square current generator is

i2=4-k-T-BR
where k = Boltzmann’s constant: 1.38E—23 (W - sec/°K)
T = temperature in °K
B = bandwidth in hertz
R = resistance in ohms

Alternatively, the equivalent thermal noise could be represented by a mean-square
voltage source in series with the resistor (which would then be noiseless) with the
level

§?=4:kT'R'B

The two methods are equivalent; however, the ‘‘series voltage’ technique adds
another node to the circuit. Thus, the ‘parallel current” technique is used.

For the entire circuit, each noise generator’s contribution is calculated and
propagated, by the appropriate transfer function, to the output of the circuit. At
the output, all of these contributions are RMS-summed to obtain the “‘total output
noise.”” RMS stands for root mean square, that is, each contribution is squared,
then the square root is taken of the average of all these amounts (this is the technique
for adding variances). Also, since the transfer function from output to anywhere
else in the circuit is known, PSpice will calculate the ‘‘equivalent input noise.’’
Detailed reports may, optionally, be generated showing the individual noise contribu-
tions.

8.2 THE .NOISE STATEMENT

The **.NOISE”’ statement directs PSpice to perform the noise calculations and specifies
which nodes are the output, and where the input is. Moreover, the noise calculations
are done over a range of frequencies and the noise analysis is done in conjunction
with a frequency response analysis (.AC). This means that both a .NOISE and
.AC statement are required to do the noise calculations. The .AC statement sets
the frequencies at which the noise calculations are done. For the statement

.NOISE V(<node> [,<node>]) <source name> |interval value]

V(<node> [,<node>)) is the total output noise voltage: it may be a single node,
in which case the noise voltage is referenced to ground, or a pair of nodes, in
which case the noise voltage is taken to be across the two nodes. <source name>>
is the name of an independent source (V-device or I-device) to which the total

78 Noise Analysis Chap. 8

output noise will be referred when calculating equivalent input noise. This source
is not a noise generator; it is just a reference for describing the input (most likely
it is the input for your frequency analysis).

If present, [interval value], causes the detailed printout of individual device
noise contributions. As you may have guessed, this happens every nth frequency
where n is the interval value. The individual contributions are referred to the output,
so you may judge how important each is to the overall noise performance of the
circuit, and are not the noise amounts for each contributor. The detailed printout,
if specified, is generated regardless of any other output you might specify.

8.3 PRINT AND PLOT OUTPUT

Qutput from noise analysis may be generated by .PRINT or .PLOT statements,
just as in AC analysis. In either case the output is organized by the frequency at
which the calculations were made. The statement forms are

.PRINT NOISE <output value> . . .
and
.PLOT NOISE <output value> . . .

Each <output value> entry becomes a column in the table output by the .PRINT
statement, or a curve in the plot output by the .PLOT statement. The output values
you can print/plot are predefined as

ONOISE total noise at the designated output

INOISE ONOISE referred to the input source
DB(ONOISE) ONOISE in decibels (referred to 1-volt/hertz!?)
DB(INOISE) INOISE in decibels (referred to 1-volt/hertz!/?)

8.4 GRAPHICS OUTPUT

Probe can also graph the values INOISE and ONOISE, and their values in decibels,
which makes it easy to display results and make calculations. Let us take a look at
a simple example of noise as demonstrated in a phonograph system to highlight
the limits imposed by noise.

Most of the noise of an amplifying system is introduced in the first stage of
the system, and, of course, once the noise is introduced nothing can be done to
reduce its effects. In a phono-preamplifier, even if the amplification of the signal
from a magnetic pickup were noise-free, there is still thermal noise generated by
the magnetic cartridge, itself, and the resistive load for which it was designed. We
may model the phono-cartridge and preamplifier as shown in Figure 8.1.

The amplifier is assumed to be noiseless. The section marked ‘‘RIAA equaliza-

Sec. 84 Graphics Output 79

Rgen Lgen

AN—TTT

R1

- Qutput

Vgen Rin E1 i C1A
1
!

Y%

Figure 8.1 Schematic of phono preamplifier circuit.

tion”> refers to a standard pre-emphasis that was involved in cutting the master
record mold. This pre-emphasis was designed to limit the excursion of the groove
at low frequencies and to improve signal strength at high frequencies. The preamplifier
has to undo this pre-emphasis, with an opposite de-emphasis, and in doing so modifies
the noise results from what you would have for an amplifier without de-emphasis.
The circuit file for this follows:

Noise from magnetic phono-cartridge

Vgen 1 0O AC 1

Rgen 1 2 13S0

Lgen 2 3 .5

Rin 3 0 47K

El 4 030 10 ; first pole of RIAA curve @ SOHz w/20db boost
Rl 4 51

Ci S 0 3.528m

RWA 4 b 212.8m ; pole @ 2120Hz

ClA & S5 352.8u ; zero @ S0O0Hz

.ac dec 100 20 20K
.noise v(5) Vgen 100
.probe

.end

You will notice that we have selected the output of the equalization as our noise
output, and the signal generator of the phono-cartridge as our reference input. We
have selected a frequency response analysis with a range of 20 hertz to 20,000
hertz to cover the entire audio range. This is the range over which the noise calculations
will be made. After running PSpice, we may graph the noise results directly. But
first, let’s look at the transfer function of the equalizer, so you will understand
some of the noise calculations we try later. The transfer function is displayed as
shown in Figure 8.2.

With 1000 hertz as the unity gain reference frequency, you can see that the
lower frequencies get quite a boost. Let us see what this does to the noise from
our pre-amplifier.

80

Noise Analysis

DBpmoemmnmonenaes B oo Ao +
i
al T L :
T - 1
-18 *:_ . . i
| | |
Y SN S — TE - SO — +
16H 196H 1.BKH 18KH 188KH

o db(V(5)N(3))
Frequency

Figure 8.2 Plot of RIAA equalization curve.

lﬁﬁnU-'- ---------------- S S A m e +
H 1
! :
H 1
R i
| |
:) - E
H o H
! & 1
] 1
] 1]
160V '
f 1
: ey !
| o o D g 1
! pa— !
i E. H
1]
H ;
i :
i i
: 1
LI [O———— S SO — S - +
184 1004 1.0k 18KH 188KH
o UCINOISE) = V(ONOISE)
Frequency

Figure 8.3 Plot of noise referred to input (in volts per root-hertz).

Chap. 8

Sec. 8.5 Calculating Total Noise and S/N 81

The boost in the equalization circuitry amplifies the noise from the phono-
cartridge and input load. Fortunately, the human ear is not as distracted by noise
at lower frequencies as those in the mid-range (where the noise has already approached
its lowest value).

8.5 CALCULATING TOTAL NOISE AND S/N

Using the phono-cartridge example from the previous section, we will use Probe
to directly calculate noise totals. Total noise is the overall variance of the combined
noise fluctuations at each frequency. This is the RMS calculation we discussed
earlier. In Probe, so long as the frequency range for the calculation has been simulated,
we can directly calculate total noise as shown.

The graph in Figure 8.4 is the running total of the noise contributions at
each frequency, so that the right-most point on the graph is the total for the entire
range of frequencies. The cursors are used, in Probe, to measure the total RMS
noise across the band. The total noise is the Y value of the cursor. Although the
greatest noise values occurred at low frequencies, we can see that the higher frequen-
cies made up for this by having more bandwidth! Even so, nearly one-half of the
total noise comes from the 20 hertz to 200 hertz band.

Now that we can calculate total noise, calculating signal to noise, or ‘‘S/N,”’
is similar since

S/N = 20-log(signal/total noise)

!

i 1
i H
! i
mn% . .i.
1 1
| i
| |
488n ! ;
1 1
i E
1]
i i~ |
1 P t
20 AR 4
) e : ,
i 7 : '
A =
: ! . i
(1S SO S —— T T SR +
104 160H 1.6KH 18KH 108KH

o sqrt (s(V(onoise) W (onoise)))

Frequency
Ci- 20.88E3, 646.2E-9 (2= 28.08, 8.680 Diff- 19.98E3, 646.2E9

Figure 8.4 Plot of total noise.

82 Noise Analysis Chap. 8

1984 - ---- oomm-——-- e E T EEERE LT +
L !
| |
' ! i
: ! :

I 4
: i

st i 1
: ':

(S S — T P —— +

16H 1684 1.8KH 18KH 1BAKH
o db(4mV/sqrt (s(V(ONOISE)*V(ONOISE))))
Frequency

Figure 8.5 Plot of signal-to-noise.

That is, value for S/N is the ratio of signal power to noise power expressed in
decibels. Given that our magnetic phono-cartridge, in this example, generated an
average signal (after de-emphasis) of 4mV, we may now display the graph for
S/N.

Again, the graph in Figure 8.5 shows the running result for S/N, starting at
20 hertz. We can see that for the entire audio range, the limiting signal-to-noise
ratio to expect from an ideal pre-amplifier is under 80 db.

8.6 INSERTING NOISE SOURCES

So far, we have considered only the noise generated by resistors. The active devices
also have noise associated with their operation, which we will review in Chapter
12 on the semiconductor devices. But what if you want to insert a noise source
directly? For example, you may want to enhance the modeling of an idealized
circuit by providing for noise. This may be done by using the controlled sources
to ‘“insert’’ noise.

The noise analysis done by PSpice will calculate the value of the noise voltages,
or currents, referenced to the input you have selected. This is a way of modeling
noise for the entire circuit where the circuit is assumed to be noiseless, with all of
the noise being generated by a noise source at the input to the circuit. Using this
approach makes it easy to compare the merits of one circuit to another, when comparing
noise specifications. You will see this in the data books, say, for operational amplifiers
where the amplifier has a specified, nominal gain, as well as a specified input

Sec. 8.6 Inserting Noise Sources 83

[¢/]
>

Noiseless
amplifier

Figure8.6 Schematic of operational am-
—_——— - plifier with noise sources.

noise voltage and current. Of course, the value for the noise sources vary with
frequency, but for most work the constant values may be assumed. The diagram
for an operational amplifier, with noise sources included, is shown in Figure 8.6.

The noise voltage is a voltage source in series with the input, since the operational
amplifier is a voltage amplifier (that is, it has a high input impedance). The noise
current is in parallel with the input and the effect of this noise source is determined
by the resistance of the input circuitry (such as a transducer). In accordance with
Ohm’s law, the value of the noise current is converted to a noise voltage by the
value of the resistance, or impedance. If the input to the amplifier has a low impedance,
then the noise generated by the current noise source will add little to the overall
input noise voltage. This would be the case if, say, the input to the amplifier were
the output of another amplifier which has a fairly low output impedance. However,
if the circuitry generating the input signal to the amplifier were of high impedance,
such as a crystal microphone, then the input current noise will be much greater.
The limiting value of the noise contributed by the noise current is determined by
the input impedance of the amplifier.

Creating models for these noise sources is a simple matter of transferring the
noise from a source, such as a resistor, to the spot in the circuit where you want
it. From earlier in this chapter, we saw that the noise generated by a resistor, in
PSpice, is

i2=4-k-T-B/R for current noise
e2=4k-T'R'B for voltage noise

These noises may be measured by attaching the resistor to a zero-level source.
Then the current noise would be current flowing through a zero-volt voltage source
connected across the resistor (so long as the resistor and voltage source are isolated).
Now that the noise current is flowing through a V-device, we may use one of the
controlled sources, such as an F-device, to transfer or ‘‘insert’’ the noise into another
part of the circuit.

As an example, let’s generate a 1pA/Hz!? as our “‘standard” and create a
noise current of SpA/Hz!'?. At room temperature (300°K) the resistance required
for the noise we want is

84 Noise Analysis Chap. 8

R=4k-T/%=4-(1.67-1072%300/10"%* = 4-1.67-300- 10 = 20,040 ohms

Then we connect this resistance across a zero-volt V-device, and transfer the noise
current with an F-device that has a gain of 10, to arrive at a noise current level of
10pA/Hz'2. The circuit file for this might look as shown:

Rnoise 1 0 20.04K
Vsense 1 0 DC O
Fnoise 2 3 Vsense 10

Nodes 2 and 3 are the output of the new current noise. And, since it is a noise
source, you don’t need to worry about which way to connect it into the circuit;
just connect'it across the input to the operational amplifier.

For a noise voltage source, we could use an analogous technique of measuring
the noise voltage across an isolated resistor, then transferring that noise with an
E-device. However, we will be lazy by using the same circuit as before. This time
we will generate a 1nV/Hz'? *“standard’’ and insert a 3nV/Hz!? noise. First, calculate
the resistance required for InA (yes, nano-amp, not nano-volt) of noise. Then we
use an H-device, instead of an F-device, which will convert the noise current to a
noise voltage. The circuit file for this might look as shown:

Rnoise 1 Q-20.04m

Vsense opco

Hno;s(g 3 Vsense 3
Nodes 2 and 3 are the output of the new voltage noise. Again, since this is a noise
source, you won’t need to worry about which way to connect it; just insert the
H-device in series with the input to the operational amplifier.

These circuits provide the noise levels we need for modeling using ‘‘pure’’
noise (voltage and current) sources so as to not load the circuit at all. This follows
the model for referring all noise to the input of the circuit. However, you will
need to use a different resistor for each source you make, so that the generated
noise is uncorrelated. You should not use just one resistor as the basis for all of
your noise generators as they would be correlated (note that this is the way to
create correlated noise, if that is what you want). It might be useful to create a set

of noise generator subcircuits of standard levels used by your circuits.

Exercise 8.6.1)
Develop a circuit that uses the measured noise across a resistor as the reference noise.
Create both an independent noise voltage circuit and noise current circuit.

Exercise 8.6.2

Demonstrate the effects of correlated noise by using the same (generated) noise source
twice in a circuit. Resimulate using two independent noise sources. Were the noise
values what you expected?

CHAPTER 9

Transient Response

Transient, or time-domain, response is the most often used analysis for simulators
like PSpice. This type of analysis attempts to simulate the operation of your circuit
as time progresses and various inputs change level or as the circuit oscillates (because
it is designed to oscillate} under the control of component values. Transient analysis
is also the most trouble-prone analysis because of the compromises that need to be
made to either (i) take small time-steps to ensure accuracy (but the simulations
take a long time to complete), or (ii) take large time-steps with reduced accuracy
(and possibly skip important features of the circuit response).

9.1 SIMULATING TIME

Without getting philosophical about ‘‘what time is,”” we observe that circuits behave
predictably, and repeatably, with the progression of time. The changes in node
voltages and branch currents are described by laws, and these descriptions are used
by PSpice to simulate how a circuit will behave. We saw this with the DC sweep
and AC response analyses, and it is not much different for transient analysis with
the exception that to predict “forward” in time, the assumption is made that the
currents, voltages, and element values will not change much from their present
values. This is simplified, of course, but as an example you might consider that if,
at the present time, an amount of current is flowing into a capacitor, then at the
next moment very much the same amount of current will be flowing. If this is
true, then the simulator may reliably predict the change in the voltage across the
capacitor. If there is a big change in the two amounts of current then the simulator

85

86 Transient Response Chap. 9

needs to take smaller time-steps. In the end, if the steps taken were small enough
the calculations will approximate the circuit response for continuous time.

All of this is complicated by the use of active elements, which we have not
covered so far (but you have some idea about their operation), that have regions of
different operating characteristics. Diodes conduct readily in one direction of current,
transistors cease amplifying with small changes in voltage, and so on. These gross
changes in operation force the simulator to slow down and step carefully ‘‘around
the curves’” in the simulated response. Sometimes the numerics for doing this fail
and produce chaotic results which halt the simulator (non-convergence at a time
point). We will look at these problems.

9.2 SPECIFYING INPUT SOURCES

You recall that the independent voltage sources (V device) and current sources
(I device) had the statement form

<name> <node> <node> <value>

where value was the DC or AC voltage or current level, depending on the device
type. A fuller representation of the input source statement is

<name> <node> <node> <DC value> <AC value> <transient value>

where if you leave out the DC value, the DC value is set to zero, and likewise for
the AC value. You would include values for all of the situations where you want
to use an independent source that has a DC value, an AC value, and a transient
value if you were doing all of these types of analyses. The DC value will be used
for the operating point analysis and DC sweep. The AC value may combine with
the DC value to set the operating point for the AC analysis. The transient value
will override the other specifications only during the transient analysis. If the transient
value is not specified, then the DC value will be used and the source is assumed
to remain constant during the simulation.

The <transient value> portion of the statement has several forms, one for
each type of waveform. If present, <transient specification>> must be one of

EXP <parameters> for an exponential waveform

PULSE <parameters> for a pulse waveform, which may repeat
PWL <parameters> for a piecewise linear waveform

SFFM <parameters> for a frequency-modulated waveform
SIN <parameters> for a sine wave

all of which are shown in Figures 9.1(a) through 9.1(e). Note: while all of the
descriptions are for the independent voltage source, the same parameters are available
for the independent current source (except that the units of volts are replaced with
amps).

Sec. 9.2

Specifying Input Sources

Voltage

Voltage

Vo -

Vi

tau1 tau2
I |
td4 td, Time
Exponential waveform
@)
tr pw tf

Pulse waveform
(b)

Figure 9.1 Diagramis of independent source waveform specifications.

87

Transient Response Chap. 9

¢
t1, v1 //
Vde Vn
o th, V,
g, L n Vi
K3 Time
>
t3! V3
t27 V2
ta, v4
Piecewise linear waveform
{c)
Vo + Var—
S
8 Vo
k=)
>
Time
|
| |
Vo — Va J |
|

— e [F—

Single-frequency FM waveform
(d)

Figure 9.1 (Continued)

Sec. 9.2 Specifying Input Sources 89
Vo + Va -
AN
TAWN
| \df
l ~
| ~-
~
~
o Vo -—— — e N
g | f—td /£
S I [— Time
I -
| -
|
| 17
| // 1/freq
Vo - VQ“ l/

Sinusoidal waveform

(e)

Figure 9.1 (Continued)

_General Form

Example

VRAMP 10 S5 EXP(OD

EXP (<vI> <v2> <tdl> <taul> <td2> <tau2>)

.2 2uS 20uS 40uS 20us)

Parameters Default value Units
<v7> initial voltage none volt
<v2> peak voltage none volt
<td1> rise delay time 0 sec
<taui> rise time constant TSTEP sec
<td2> fall delay time <td1> + TSTEP sec
<tgu2> fall time constant TSTEP sec

The EXP form causes the voltage to be <vI> for the first <tdl1> seconds.
Then, the voltage decays exponentially from <v/> to <v2> with a time constant
of <taul>. The decay lasts <td2> — <tdI> seconds. Then, the voltage decays
from <v2> back to <vI> with a time constant of <tau2>.

90

Transient Response Chap. 9

B General Form

PULSE (<vI> <v2> <td> <or> <tf> <pw> <per>)
Example

VSW 10 5 PULSE(-1V 1V SOuS .1uS .luS 2u$ 10uS)

Parameters Default value Units
<v7> initial voltage none volt
<v2> pulsed voltage none volt
<td> delay time 0 sec
<tr> rise time TSTEP sec
<tf> fall time TSTEP sec
<pw> puise width TSTOP sec
<per> period TSTOP sec

The PULSE form causes the voltage to start at <v/> and stay there for <td>
seconds. Then, the voltage goes linearly from <vi> to <v2> during the next
<tr> seconds. Then, the voltage stays at <v2> for <pw> seconds. Then, it
goes linearly from <v2> back to <vI> during the next <tf>> seconds. It stays
at <vI> for <per>-(<tr> + <pw> + <if>) seconds, and then the cycle is
repeated except for the initial delay of <td> seconds.

B General Form

PWL (<tl> <vl> <2> <v2> - - <tn> <vn>)
Example

V3 10 S PWL(O - 1V 1uS 0OV 10uS 0OV 10.1usS 10V 20usS 10V 20.1uS 20V)

Parameters Default value Units
<tn> time at corner none sec
<vn> voltage at corner none volt

The PWL form describes a piecewise linear waveform. Each pair of time-voltage
values specifies a corner of the waveform. The voltage at times between corners
is the linear interpolation of the voltages at the corners.

Sec. 9.2 Specifying Input Sources 91

rGeneral Form
SFFM (<vo> <va> <fc> <mdi> <fs>)

Example

VFM 10 5 SFFM(O0 2V 1LO1LMEGHz S 4KHzZ)

Parameters Default value Units
<voff> offset voltage none volt
<vampl> peak amplitude of voltage none volt
<fc> carrier frequency 1/TSTOP hertz
<mdi> modulation index 0
<fs> signal frequency 1/TSTOP hertz

The SFFM (Single-Frequency FM) form causes the voltage to follow this formula:

vo + va-sin(2n-fc- TIME + mdi-sin(2w- fs- TIME))

_General Form
SIN (<vo> <va> <freq> <td> <df> <phase>)

Example

VSIG 10 S SIN(O .01 100KHz 1mS 1E4)

Parameters Default value Units
<vo> offset voltage none volt
<va> peak amplitude none volt
<freq> frequency 1/TSTOP hertz
<td> delay 0 sec
<df> damping factor 0 sec™!
<phase> phase 0 degree

The SIN form causes the voltage to start at <voff> and stay there for <td>
seconds. Then, the voltage becomes an exponentially damped sine wave described
by this formula:

92 Transient Response Chap. 9

vo + vassin(2m-(freq-(TIME — td) — phase/360))-e ~(TIME — td)-df

Note: the SIN waveform is for transient analysis only. It does not have any
effect during AC analysis. To give a voltage a value during AC analysis use an
AC specification; for example,

VAC 3 0 AC 1V

will have an amplitude of 1 volt during AC analysis and be zero during transient
analysis, whereas

VTRAN 3 0 SIN(O 1V 1KHz)

will be the other around.

During the transient analysis, all of the independent sources that have a transient
specification will be activated. The remaining independent sources will maintain
the value of their DC specification, or zero if there is no DC specification.

9.3 THE .TRAN STATEMENT

The ‘. TRAN’’ statement specifies the time interval over which the transient analysis
takes place. It also specifies some limits on the way PSpice does the analysis and
when hard-copy output will be generated. The statement form ts

TRAN[/OP] <print interval>> < final time> [<no-print interval> [<step ceiling>1]

where the last two values are optional (that is, you may include either the third
value, or both the third and fourth values). For the simulator, ‘‘time’’ always starts
at zero and proceeds up to the value of <final fime>. The **/OP’’ option, which
stands for Operating Point, commands PSpice to print out the table of node voltages
calculated from the bias-point calculation for the transient analysis. Normally these
voltages would be the same as the bias-point calculation from the other analyses,
such as frequency analysis, unless you specified some initial conditions which applied
only to transient analysis. Then the bias-point is likely to be different, and “*/OP*’
will save the node voltages in the output file.

The value for <print interval> specifies when hard-copy (PRINT and PLOT)
output will be generated. The value for <no-print interval> will suspend hard-
copy output until that amount of simulated time passes, so you will have only
PRINT or PLOT output for the final stretch of the simulation.

Sec. 9.5 Graphics Output and Calculations 93

The value for <step ceiling> specifies the maximum size of time step PSpice
may take in working through the transient simulation. If the ceiling value is not
specified, then PSpice uses 1/50th of the duration of the simulation, which is the
maximum time-step size for any transient simulation.

9.4 PRINT AND PLOT OUTPUT

Output from transient analysis may be generated by .PRINT or .PLOT statements,
just as in DC and AC analysis. In either case the output is organized by the time
at which the calculations were made. The statement forms are

.PRINT TRAN <output value> . . .
and ‘
.PLOT TRAN <output value> . . .

Each <output value> entry becomes a column in the table output by the .PRINT
statement, or a curve in the plot output by the .PLOT statement. The output values
you can print/plot are node voltages and device currents (which also means source
currents, as a source is also a device).

.PRINT TRAN V(7) prints the voltage at node 7
.PRINT TRAN I(R1) prints the current through R1

You may print several values in one table, and mix voltages and currents; for
example:

.PRINT TRAN V(3) I(R2)

Usually you will want to print the analysis time in the first column to simplify
finding results in the table, so PSpice does this for you; the first column, which
comes before the columns you specify, always contains the analysis time.

9.5 GRAPHICS OUTPUT AND CALCULATIONS

Using Probe with transient analysis is identical to what we have done before with
DC and AC analysis; just include a .PROBE statement to the circuit file. Let’s try
simulating our LC-filter example with time-varying stimulus. Initially, we will use
a step waveform to simulate overshoot and ringing. Recalling the LC-filter circuit
from the frequency analysis section:

94 Transient Response Chap. 9

Four double-pole, low-pass, LC-filters
Vin 1 0 pwl(O,0 .1im,3 Sm,2 S.1im,0)
$Q=.8

Rl 1 2 200

Ll 2 3 10mH

Cl 3 0 1luF

*Q=1

R2 1 4 100

L2 4 5 10mH

ce 5 0 LuF

*Q=2

R3I 3 & 50

L3 & 7 10mH

C3 ? 0 1luF

*Q =4

R4 1 8 @5

L4 8 9 10mH .
C4 9 0 LuF

.TRAN 1lm 10Om

.PROBE

.END

You can see that a piecewise-linear source was specified for the step input. This

step has a 0. 1-millisecond transition and a nearly 5-millisecond duration. The transient
analysis has been specified to last for 10 milliseconds.

¥

o w3 = v(B) = w(?) = w(9)

Time

Figure 9.2 Plot of LC-filter transient response.

Sec. 9.5 Graphics Output and Calculations 95

Looking at the response of the filter sections, we see overshoot and ringing

in the higher Q filters. Besides just looking at voltages and currents, with Probe,
we can also make measurements using formulas.

In Figure 9.3 we see two derived measurements for (i) the volt-amp product,
or instantaneous power dissipation, of resistor R4, and (ii) the running RMS average
of this volt-amp product, or average power dissipation. If the step function were
continued, as an oscillation, then the RMS average across one cycle would represent
the long-term power dissipation of this resistor. In this case the dissipation would
be slightly less than 0.3 milliwatts.

By using sinusoidal excitation, we can also see effects that were demonstrated
using frequency analysis. To do this we modify the circuit file for the input source,
as shown:

Vin 1 0 sin(0 1 2000)

which becomes a 2000 hertz sine wave with a 1-volt peak amplitude.

In Figure 9.4, we see different amplitudes of response to the same input.
Since the input sine wave is slightly above the resonant frequency of the filter
sections, the amplitude of response is set by the Q of the sections, with the higher
Q sections having greater response. Also, the higher Q sections have greater phase
lag. If you look closely, you will notice that the zero crossings of the higher Q
sections come after those for the lower Q sections.

Finally, the step overshoot we saw previously is also apparent in the transient

S 8 5

- S . S _Q-ql.j\."t"‘.f_ﬂ._.—:._..___4__a._____+
2ms 4ns tms 8ns
o i{RM)=v(1,8) = rms(i(RE)*v(1,8))

Time

¥

Figure 9.3 Plot of instantaneous and average power.

96 Transient Response Chap. 9

2.0V

8.8v:

T

~2.8V

QN g

5 u@ 2 B 5 WD) = W@
Tine

Figure 9.4 Plot of sinusoidal excitation of LC-filter.

response to sinusoidal input. This initial transient is present because there is a change
in the input, so that at TIME = 0 the input changes from nothing to a sine wave.
This is a step change, and there is an overshoot and ringing period that dies out to
become the steady-state response. This is one difference between transient and fre-
quency response.

9.6 SETTING INITIAL CONDITIONS

For many of the simulations you run, you will want the circuit to begin with particular
node voltages or device currents; for example, you may want to start with a particular
inductor current. To do this you need to set the ‘‘initial conditions’” for the simulation.
There are two ways of setting initial conditions, and a related way of influencing
the initial condition (for added confusion, which we will try to correct).

The first statement which directly sets the initial conditions is

AC V(<node>) = <voltage value> . . .

which presents a list of nodes to be set to the indicated voltage. These statements
are effective for transient analysis only. During the bias-point calculations, which
is the setup for the transient analysis, PSpice connects voltage sources, each having
a 2 milliohm source resistance, to the nodes specified by the .IC statements in
your circuit file. This effectively fixes the nodes to those voltage levels. The 2
milliohm source resistance protects against voltage loops that are impossible to

Sec. 9.6 Setting Initial Conditions 97

resolve. Then, just before the transient analysis begins, the voltage sources are
removed and the circuit is initialized.

A related statement sets initial conditions for devices instead of nodes. Actually,
it is not a statement but a part of the capacitor and inductor component statement.
This augmentation of the statement was kept from you, until now, so you can see
how it fits with the other methods of setting initial conditions. For the capacitor,
you may set the initial voltage impressed on the ‘‘plates’’:

capacitor statement 1C = <initial value>
For the inductor, you may set the initial current flowing through the windings:
inductor statement 1C = <initial value>

These settings, like the .IC statement, are used for transient analysis only. Further-
more, the IC = option is used only when the .TRAN statement includes the ““UIC”’
option, which stands for ‘‘Use IC =,”” as shown:

.TRAN [/OP] list of time-values [UIC]

This commands PSpice to skip the bias-point calculations and proceed to the transient
analysis.

Setting the initial capacitor voltage this way lets you specify the relative voltages
without having to specify the referenced-to-ground-voltages of the nodes of the
capacitor. For the inductor, this is the only way to specify easily the current in the
windings. Again, you do not need to specify the referenced-to-ground-voltages at
the nodes of the inductor.

Of course, you can ‘‘over specify’’ the initial conditions by using both .IC
and IC = to force, for example, conflicting voltage levels across a capacitor. Be
careful.

The third, related way of setting up the simulation works during the bias-
point calculation of all the analyses. This is the .NODESET statement, which is
similar to the .IC statement, in form:

.NODESET V(<node>) = <voltage value> . . .

It does not force the initial voltage at a node. Rather, it provides PSpice with an
initial guess at the outcome of the bias-point calculation and operates as follows:

first, voltages sources with source resistance of 2 millichms (like the ones
used for the .IC statement) are connected to the circuit where specified,

then the bias-point calculations are made and the circuit converges to a set of
node voltages,

then the .NODESET voltage sources are removed, ‘‘releasing’” the circuit,

then the bias-point calculations continue without the .NODESET voltage sources
connected, and the final bias-point voltages are calculated.

98 Transient Response Chap. 9

As you can see, the .NODESET statement compels PSpice to use the specified
voltages for only the first half of the bias-point calculation, then PSpice is free to
recalculate the node voltages. This technique lets you give ‘‘hints’” to PSpice about
the bias-point voltages without fixing the nodes to a particular voltage. This is
particularly useful for circuits that have more than one stable solution, especially
balanced circuits (for example, flip-flops), which may have a metastable state that
PSpice will be happy to use as the bias-point. The *‘hints’’ provided by the . NODESET
statement may not even need to be that accurate, so long as they decide the issue
of how you want the circuit to be biased.

To repeat, the .NODESET statement is used during the bias-point calculation
for all of the analyses. Of course if you have both statements, .IC and .NODESET,
specified for the same node the .IC statement will override during the bias-point
calculation for transient analysis only.

9.7 HAZARDS: PROBLEMS OF TIME-STEPPED SOLUTIONS

The major problem of transient analysis is accuracy or (to be pessimistic) error.
Since the circuit equations are solved numerically instead of analytically, approxima-
tions are used to extrapolate circuit operation at the next ‘‘instant’’ in time. Accuracy
becomes a question of how good the approximations are and how far they .may be
extrapolated (see Appendix C for references explaining the operation of PSpice).
Simulation accuracy is controlled by the parameter settings for RELTOL, VNTOL,
ABSTOL, and CHGTOL, which are set by using the .OPTIONS statement (see
Appendix A). The trade-off is computation time.

The foremost of the parameters is RELTOL, which sets the relative accuracy
of the calculated voltages and currents. RELTOL is the numerical ratio of error
allowed to the signal level; for example, a RELTOL value of 0.01 means that the
voltages and currents are to be calculated to within 1 percent of their ‘‘real’’ values.
But, how does the simulator determine what the ‘‘real”” value is without calculating
it? It doesn’t . . . but the mathematical properties of the solution method let you
estimate how close you are to the ‘‘real’’ value. So the ‘‘real”’ value, or answer,
is within RELTOL of the answer calculated by PSpice. Just imagine a ‘‘band of
uncertainty,’’ with a width of

2-RELTOL - value

centered on the waveform calculated by PSpice. Somewhere, in this band, lies the
“‘real’”” waveform.

The other tolerance parameters, VNTOL, ABSTOL, and CHGTOL, set the
best accuracy for the voltages, currents, and capacitor-charges/inductor-fluxes, respec-
tively. That is, these parameters set the least error, or (optimistically) most accuracy,
allowed in terms of an absolute amount. Now, why do we need this? Think about
a waveform whose value changes sign. As it approaches zero, maintaining RELTOL
accuracy will force the simulator to work harder because the tolerance, in absolute

Sec. 9.8 Graphics Output and Calculations 99

terms, is getting tighter. Ultimately, at zero, the uncertainty band containing the
‘“‘real”’ waveform has zero width, and there is no assurance that the “‘real’’ value
could ever be calculated. These tolerance parameters set the minimum error allowed,
and the uncertainty band’s width becomes, for a voltage, twice the maximum of
RELTOL - value and VNTOL.

As the transient solution progresses, internal calculations are made for the
next time point to evaluate the circuit. The size of each time-step is set as the
minimum of several factors, but usually it is being set by a calculation of the
errors involved in the integration techniques used for the energy storage elements
(such as capacitors) in the circuit. If the node voltages are changing rapidly, then
small time-steps are used to calculate accurately ‘‘around the curves.’’ If the circuit
becomes less active, then the node voltages are more stable and larger time-steps
may be used.

Using ever larger time-steps becomes a problem when the step size exceeds
the Nyquist rate for the ‘‘real’’ signals in your circuit. After all, the simulator is
like a sampled-data system with samples being made at every time-step. If the
samples become too widely spaced, then high-frequency operation will be “‘aliased’”
to a lower frequency. For example, an astable multivibrator circuit may be incorrectly
simulated by allowing the simulator to have a step-size which is larger than one-
half the oscillation period. In this case, the standard capacitor charge/discharge
circuitry is never activated because the simulator has found a ‘‘stable’’ solution
(a lie) where the discharge threshold is never reached.

To prevent the time-step from becoming too large and missing changes in
the circuit, PSpice forces a time-step at each corner in the driving waveforms; for
example the ‘‘pulse” and ‘‘piecewise linear’” specifications. PSpice also limits the
time-step to one-eighth of the cycle time of the sinusoidal source with the highest
frequency. Another limit is twice the previous time-step size, which has proven to
be a good, conservative measure for not allowing the simulator to get too far ahead
and into trouble. In addition, you may also set the maximum step-size by using
the fourth parameter of the .TRAN statement. PSpice uses the minimum of all the
limits described to limit the size of the time-step.

9.8 BENEFITS: TRANSIENT SOLUTIONS FOR STATIC PROBLEMS

Transient analysis can provide some solutions to problems that you would ordinarily
consider as static problems. The classic example is analyzing the transfer characteris-
tics of a circuit with regenerative feedback, such as a Schmitt trigger. These types
of circuits cannot be analyzed easily using a DC sweep. The circuit has a region
with two stable operating points, and the simulator will need to jump discontinuously
from one stable solution to the other at each end of this region.

By using transient analysis and the piecewise linear source, you can apply a
slowly varying ramp to the same circuit, just as you might with the DC sweep.
The difference here is that the circuit is discontinuous only in the sense of its DC

100 Transient Response Chap. 9

operating point; in transient analysis the circuit is continuous, although at some
threshold it does transfer rapidly from one operating point to the other. When the
circuit switches like this, PSpice reduces its time-step size to analyze carefully the
transition. During the remainder of the time the time-steps become quite large because
the node voltages do not change so much.

This kind of treatment duplicates exactly what you would do on the workbench;
you would slowly change the input and measure the output. Also, you would probably
sweep the input in one direction, until the circuit switches, and then sweep in the
other direction, until the circuit switches back. Doing this measures the hysteresis
of the circuit. This is easy to do with the piecewise linear source in one transient
run, but with DC analysis you would need to do a run for each direction of the
sweep.

We can also use a rapidly varying ramp to measure the size of energy storage
elements in a circuit, or device. As we reviewed earlier, a llnear capacitor stores
charge according to the equation

g=C-V
Differentiating this equation with respect to time, we get

dQ/dt =1= C-dV/dt + V-dC/dt
which simplifies to

I=C-dvidt

since: (i) if the capacitor is linear, then dC is zero, and (ii) if the capacitor is
nonlinear, then the original equation is wrong. In the latter case, charge is the
integral of the capacitance, with respect to voltage; using integration by parts, with
both voltage and capacitance as functions of time, before differentiating (the equation
with respect to time) leads to the same result. Minor rearranging yields

C = I/(dV/dr)
And, of course, similar analysis for inductors will yield the equation
L = Vi(dl/dr)

Let’s get back to transient analysis techniques. We now have a way to measure
the capacitance of a network versus voltage. By applying a voltage ramp that produces
currents due to capacitance which are much larger than the DC currents (for the
same voltage levels), the current represents the value of the capacitance along the
ramp. Or, we could measure inductance versus current by using a current ramp.
Just be sure to isolate and measure one energy storage element at a time. (Later in
the book we will see this technique used to plot the capacxtance versus voltage
characteristics of the semiconductor devices.)

Sec. 9.9 Unusual Waveform Sources 101
9.9 UNUSUAL WAVEFORM SOURCES

Sometimes your simulations will need a stimulus which is more exotic than a simple
sine wave or piecewise linear function. With some ingenuity, you will find that
you can create many unusual waveforms by combining the ones available through
the use of controlled sources. For example, to have a 10Khz signal riding on a
60Hz power line you might use the voltage-controlled voltage source:

vsig 3 O sin(0 1 10Kk)

rsig 1 0 1

vpwr 2 0 sin(0 120 &0)

rpwr ¢ 0 1

eboth 3 0 poly(2) 1,0 2,0 0 1 1

although you could have added these signals by putting the sources in series.

Multiplying, or modulating, signals is another way to generate desired inputs.
For example, to create a ten-cycle burst of sine waves you might multiply a sine
wave source with a piecewise ‘‘switching’” function:

vsigl 0 sin(0 1 1K)

rsigli 0 1

vsw 2 0 pwl(0,D0 .00lm,L 9.999m,1 10m,0)
rsw 2 01

eboth 3 0 poly(2) 3,0 2,0 000 0 1

which will produce ten cycles of a 1KHz sine wave at the start of the simulation,
and then be zero for the remainder of the run. This might be used to simulate the
reaction of a filter circuit. You may notice that, in this example, a .001-millisecond
transition time was used for the switching function. This is much shorter than the
I-millisecond cycle time of the sine wave, so it should not deviate much from a
true sinusoidal shape. However, the transition should not be too short as PSpice
will cut back on its time-step to process the changes in the switching function.
Then it will take some time to get moving again with the simulation.

By extension, you could build several of these generators, with interleaved
“‘on’’ times, to step through a series of frequencies. You have to be careful that
the zero crossings of the sine waves occur when the switching functions transfer
from one source to another, to get a clean transition. You may need to adjust the
initial phase of a source to make this happen. Of course, it is a good idea to do a
run with just the sources to check their operation.

~ Amplitude modulation may be done in a similar way. For example, modulating
a 500KHz signal, at an 80 percent modulation index, with a 1KHz sine wave:

102

vsig 1
rsig 1
vmod o
rmod 2
eboth 3

Transient Response Chap. 9

0 sin(0 1 500K)

01

0 sin(d .8 1K)

01

0 poly(2) 1,0 2,00 0001

Since we are doing a simple multiplication of the two signals, the modulation index
is the ratio of the peak amplitude of the modulating signal to unity. For the same
reason the modulating signal has an offset of 1 volt, or unity, so that if the carrier
signal were unmodulated its peak amplitude will be 1 volt.

CHAPTER 10

Distortion and Spectral Analysis

Signal distortions come in many forms, most of them undesirable, and are usually
the product of nonlinearity in the gain, or nonuniformity in the phase, of a circuit.
The most common types of distortion have been categorized and named:

Harmonic distortion comes from nonlinear gain. The output of the circuit
contains integral multiples, or harmonics, of the fundamental input frequencies.

Phase distortion comes from nonlinear phase versus frequency response. This
gives rise to ‘‘echoes’” in the output that precede and follow the main response,
resulting in a distortion of the output signal when the input signal has many
frequency components.

Intermodulation distortion comes from mixing signals at different frequencies.
The output of the circuit contains signals at integral multiples of the sum or
difference of the original frequencies.

Cross-modulation distortion occurs when the modulation of one signal is unin-
tentionally transferred to another signal in the circuit.

Crossover distortion comes from nonlinearities in amplification as the signal
crosses over between regions of amplifier operation (such as a ‘‘push-pull”’
amplifier).

10.1 THE .DISTO ANALYSIS

The SPICE2 simulator, from U.C. Berkeley, has a type of analysis called .DISTO
for evaluating some distortion measures. This analysis is performed in conjunction
with a frequency analysis, the way noise analysis is done, that is calculations are

103

104 Distortion and Spectral Analysis Chap. 10

performed at the frequencies specified by the . AC statement at the time the frequency
analysis is done. The .DISTO analysis calculates the magnitude of power into a
load resistor for the following small-signal harmonic products:

the power of 2-f
the power at 3-f

where f'is each frequency specified as part of the . AC statement, and for the following
small-signal intermodulation products:

the power at f + k-f
the power at f — k-f
the power at 2-f — k-f

where the factor k is specified by the .DISTO statement. The relative magnitude
of the second signal, represented by k- f, may also be set by the .DISTO statement.
The results of the .DISTO analysis are available to the .PRINT and .PLOT output
statements.

PSpice does not include the .DISTO statement because:

The calculations are for small-signal distortion (only) whereas many of the
interesting distortion analyses are for large signals.

The calculations are for power at only a few, selected frequencies, whereas
most circuits exhibit distortion components at a large number of frequencies.

Moreover, the results were incorrect, particularly for MOS circuits, where
the small-signal model equations had not kept up with advances in the nonlinear
(large-signal) model.

Instead, PSpice makes use of spectral analysis techniques to calculate distortion.

10.2 HARMONIC (FOURIER) DECOMPOSITION

One type of spectral analysis is part of the PSpice simulator. It is called Fourier
analysis, and is done in conjunction with the transient analysis. Jean Fourier (1768~
1830) developed mathematics demonstrating that any periodic function could be
expressed as the sum, or series, of sinusoidal functions. Moreover, if a periodic
function is expressed this way, then each sinusoid, or ‘‘component,”’ in the series
must be periodic over the same interval as the original function. This happens only
with sinusoids having frequencies that are an integer multiple of the frequency of
the original function; that is, the sinusoids are ‘‘harmonics’’ of original function’s
‘‘fundamental’’ frequency.

Sec. 10.3 The .FOUR Statement 105

The .FOUR statement directs the simulator to perform a ‘ ‘harmonic decomposi-
tion,”” calculating the “‘Fourier coefficients’” for the sinusoidal components of any
voltage or current that you could PRINT or PLOT. Also, you select the fundamental
frequency on which to base the decomposition. These calculations create tabulated
results which include the DC component, the fundamental component, and the compo-
nents of the second through ninth harmonic of the fundamental. The magnitude
and phase values, both absolute and relative to the fundamental, are compiled in
the table. Finally, harmonic distortion is calculated.

It is important to remember that when a harmonic decomposition is taken of
a transient waveform only part of the waveform is used for the decomposition.
The period of time used is inverse of the frequency, or one cycle’s time, of the
fundamental frequency you specify for the decomposition. The segment of the wave-
form that is used is the last period (= l/frequency) of the transient simulation.
You will want to set up your simulations so that the segment of waveform decomposed
is at the end of the simulation (usually you will just set the time limit for the
entire transient run to be one cycle’s time of the fundamental).

Finally, a note about harmonic distortion, which is defined to be the ratio of
the root-mean-square (rms) sum of the magnitude of the harmonics to the magnitude
of the fundamental, or as a percentage

% harmonic distortion = 100+ (V2 + V3 + V2 + -«)y,

where V,21 is the magnitude of the nth harmonic, squared. Calculating the popular
distortion measure called *‘percent total harmonic distortion™ or ““%THD’’ is straight-
forward, and is done for you by PSpice. Also, while setting up the transient analysis
you can select the signal level, for example, to include the effects of crossover
and clipping.

10.3 THE .FOUR STATEMENT

Remember, you have to be doing a transient simulation to get a harmonic decomposi-
tion using the .FOUR statement. Having covered that, we now look at the .FOUR
statement and find that it is similar to a .PRINT statement, with the form

.FOUR <fundamental frequency value> <output value> . . .

One, or more, node voltages and/or device currents may be selected for harmonic
decomposition. You have to choose the fundamental frequency for this analysis.
Let’s take a look at a small circuit which demonstrates Fourier analysis.

*Fourier decomposition
vin 1 0 sin(0 .57 1000)
rin 1 0 1G

106 Distortion and Spectral Analysis Chap. 10
ed 2 0 poly(l)
r3 2 0 1G
.tran lu 1m
.four 1000 v(l) v(e)
.probe

.end

(1,0) 01 0 -1

This circuit does a transient analysis of a 1000 hertz sine wave exciting a VCVS
‘with the transfer function x — x*. This is a cubic polynomial that was selected to
demonstrate the distortion effects of nonlinear gain and ‘‘soft’’ clipping, since the
input waveform has a peak value of nearly 1/3V2, which is the point at which the
cubic polynomial reverses direction. The transient simulation is run for one cycle of
the input sine wave, 1 millisecond, since this is the fundamental waveform of the
simulation. Note that both the input and output voltages were selected for decom-
position. Seeing the decomposition of a known waveform will provide some guid-
ance in interpreting the results.

The .PROBE statement was included so we could look at the waveforms; it
is not required, and neither is any other output statement, like .PRINT or .PLOT,
for the Fourier decomposition.

10.4 LARGE-SIGNAL DISTORTION

Running the circuit described previously will yield results not obtainable using the
.DISTO analysis; since the DC bias-point has the input voltage at zero, the linear
term of the transfer polynomial will dominate and the output will show very little
harmonic distortion. Looking at the output file, we find two tables. The first is for
the input voltage, V(1):

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT =

HARMONIC FREQUENCY FOURIER NORMALIZ2ED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 5.700E-01 1.000E+00 3.062E-07 0.000E+00
2 2.000E+03 3.719E-10 L.S52SE-10 1.297E+02 1.297E+02
3 3.000E+03 1.56AE-09 2.750E-09 8.906E+01 &.906E+01
4 4.000E+03 S.?04E-10 1.001E-09 1.554E+02 1.554E+02
5 5.000E+03 9.842E-10 1.727E-09 -2.17?9E+01 -2.179E+01
b tL.000E+03 5.810E-10 1.019E-09 1.21LE+02 1.216E+02
7 7.000E+03 2.297E-09 4.030E-09 1.311E+02 1.311E+02
8 8.000E+03 7.364E-10 1.292E-09 3.312E+01 3.312E+01
q 9_000E+03 9.024E-10 1.583E-09 -1.565E+02 -1.S6SE+02

TOTAL HARMONIC DISTORTION =

2.017000E - 10

5.78L659E-07 PERCENT

and a similar table for the output voltage, V(2):

Sec. 10.4 Large-signal Distortion 107
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(c2)
DC COMPONENT=1.7?90805E-10
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1 .000E+03 4.311LE-01 1.000E+00 3J.7?0?E-Q7 0.0CCE+DO
c c.000E+03 4.006E-10 9.292E-10 1.242E+0¢2 1.282E+02
3 3.000E+03 4.630E-02 1.074E-01 ?.12?E-0& BE.75BE~-0Ob
4 4. 000E+03 5.130E-10 1.190E-09 1.408E+02 }.408E+02
5 5.000E+03 1.374E-049 3.1687E-09 1.27?3E+0¢ 1.273E+02
b &.000E+03 4. 424E-10 1.026E-09 1.073E+02 1.073E+02
? ?.000E+03 1 .007E-10 2.336E-10 1.263E+02 1.263E+023
8 4.000E+03 5.842E-10 1.3%55E-09 4.881E+01 4.881E+0L
q S.000BE+03 1.106E-09 2.566E-09 1.53DE+D2 1.530E+DP

TOTARL HARMONIC DISTORTION =

1.07?3909E+01% PERCENT

For each of the selected voltages, the tables show the magnitude and phase of the
components at 2x, 3x, . . . 9x the fundamental frequency. These are the harmonics
of the fundamental. The values are also shown in a normalized format so that the
magnitudes are normalized with the fundamental at unity, and the phases are normal-
ized with the fundamental at zero.)

Above the table, the DC component of the waveform is shown. Below the
table, the calculation for ‘‘total harmonic distortion’’ is shown (of course, the calcula-
tion uses only the second through ninth harmonics).

Looking at the decomposition table for the input sine wave, we can see the
limits of the calculations—this is a sort of ‘‘noise floor’” due to the numerics. The
input ideally has a zero DC level, and zero magnitude for all harmonics resulting
in zero harmonic distortion. Instead, PSpice arrived at values of around one part in
a billion (relative to the fundamental) . . . numerical noise. From this we can see
that only those values which are larger than this ‘‘noise floor’” are significant (and
useful) values.

The same analysis applies to the phase values, so that as harmonic magnitudes
become small it becomes difficult to determine phase. Again, this is a numerical
“‘noise’’ problem. For simple systems, where the output is a periodic waveform,
you know from Fourier analysis that the harmonics are either in phase (0 degrees)
or out of phase (180 degrees). So, sometimes you have to apply some judgment in
reading the tables.

Looking at the decomposition table for the output waveform, we can see that
there is one major harmonic at three times the frequency of the fundamental. It is
in phase and has a level about 11 percent of the fundamental. Accordingly, the
total harmonic distortion is also calculated at about 11 percent.

Exericse 10.4.1

Show that the .FOUR results will yield smaller distortion values by reducing the size
of the input sine wave. Try .1 volts peak and .01 volts peak.

108 Distortion and Spectral Analysis Chap. 10

10.5 HARMONIC RECOMPOSITION

One of the uses of the decomposition table printed by the Fourier analysis is providing
the harmonic information for regenerating the signal that was decomposed. This
may provide you with a compact and fast technique for packaging a complex wave-
form. Of course, it needs to be a periodic waveform that can be represented adequately
with the first nine harmonics.

Looking at the previous table for the cubic transfer function, we find- that the
output waveform can be represented by summing two sine waves: one is the fundamen-
tal, with a magnitude of 0.4311, the other is at 3x the fundamental frequency,
with a magnitude of 0.0463. We can combine these signals in the original circuit
and compare our ‘‘recomposed’’ signal to the original. This is done by adding two
current sources, which sum to develop a voltage across a 1-ohm resistor, to the
circuit:

* Fourier decomposition
vin 1 0 sin(0 .57 1000)

rin 1 0 16

ed 2 0 poly(l) (3,0) O 1 O -1
r3 2 0 16

ix1l 0 3 sin(0 .4311 1000)

ix3 0 3 sin(0 .0463 3000)

rx 301

.tran 1lu 1m
.four 1000 (v(l) v(2) v(3)

probe
end
T S e e B T +
: - !
: PN 5
; / ®\ j
' Vi A9 i
H a i
i ! N |
H z”f \-. '
[D.\ 1
: "V’ —N —_— \‘\ — i
BMﬂ_Fi»-"’_ T . A ‘-';‘-\‘\ . s |
. — . ; N S
! S - A
Y

{ o /i
: \ i
| N\ / :
1 kY]
i N o ;
i .]
i " / :
: S |
: e :

)
7S S T O — N SRR +
0.0ns B.2ns B.4ns B.6ns B.Bus 1.0ns

o Lixd) = 1€ix3)

Figure 10.1 Plot of fundamental and harmonic.

Sec. 10.6 Fourier Transform 109
Looking at the output with Probe, see Fig. 10.1, we can see the components of

our ‘“‘recomposed’’ waveform. We can also check the accuracy of our work by
checking the difference between the original waveform and the ‘‘recomposed’” signal.

1BV - o e emommme e rmeemmenaaan e Ao o +

Y
i S

|

H |

|]

| :

i ' |

Bul . ’)
.f_—-r 7\-._.._‘_\,_ . Co ,~—1~

: \[- :

‘ \ S i

| hY]

E \\ ’/ E
-SuU.i. e . \\\- “_/"/ 1:_
| N |

| . |
T S fromeomncanan S — SR — SRR +
B.Bns B.2ns B.4ns B.6ms B.8ms 1.0ns

o V(2)-V(3)

Time

Figure 10.2 Plot of signal error.

Notice the scale for the Y-axis, showing that the difference is quite small
relative to the magnitude of the waveforms being compared.

Exercise 10.5.1

Do the same analysis for a circuit with the polynomial function x — x>. What maximum
input level will you use to show “‘soft clipping’’? Look at the harmonics and compare
their magnitudes with the ones in the example.

10.6 FOURIER TRANSFORM

Another type of Fourier analysis is part of Probe, which has the capability to calculate
“‘Fourier transforms’’ of the data sequences in the Probe data file. While the Fourier
transform is a special case of the Laplace transform, the Fourier integral (the function
performing the transform) can also be thought of as an extension of the Fourier
series we saw in the previous section; by extending the fundamental period to infinity
each harmonic component becomes infinitesimally close in ‘‘frequency,”’ so that
in the limit the Fourier series becomes the Fourier integral. This means the Fourier
transform converts a function of time to a function of frequency, and vice versa.
The physical interpretation of Fourier transform is the conversion of a time-domain

110 Distortion and Spectral Analysis Chap. 10

signal to the AC steady-state frequency content, or spectrum, which makes up the
signal. However, the inverse Fourier transform converts the AC steady-state re-
sponse, or gain, of a system into the time-domain response of that system to a flat
input spectrum (which is an impulse).

The Fourier transform in Probe is a ‘‘discrete Fourier transform’’ (DFT), where
the Fourier integral has been replaced by a nearly equivalent summation formula
applied to evenly spaced samples of the signal. Furthermore, the transform is accom-
plished by a special technique credited to Cooley and Tukey, which is commonly
called a “‘fast Fourier transform’ (FFT). This is a numerical trick whereby if the
size of the data sequence is a power of two (such as 256, or 4096) a much shorter
sequence of calculations can be used to get the same results as the discrete Fourier
transform. Even for modest data sets the DFT is so time consuming that most
computer applications use the FFT (for example, for 1024 points only about 1
percent of the compute time is required using the FFT versus the “‘brute force”
DFT). Probe uses the FFT, and gets its data by interpolating the data file values to
get a set of values with the appropiate number of data points. Then the FFT is
performed.

For Probe, the Fourier transform is a mode; all displayed values or formulas
are transformed before being displayed (we will use the word ‘‘signal’’ to also
mean a formula of signals). As you might expect, there are some items to be
cutions, ahot. when. using Fourier transforms:

If the signal is nonzero for a finite interval, then you should transform that
entire interval. Alternatively, if the signal goes on forever, then transform an
interval that is ‘‘typical’’ of what the signal looks like at the other times.

The transform should be made on a band-limited signal. The usual warnings
about data sampling at greater than the Nyquist critical rate are taken care of
by PSpice and Probe, since the simulation itself is subject to the Nyquist
sampling theorem and the time-steps in the transient simulation are usually
much smaller than the highest frequency signal. Probe uses the total number
of time-steps to guide the FFT. However, if there is a difference in the value
between the beginning and end of the waveform, this is a discontinuity which
implies a DC level and/or a high frequency content which will be aliased
(frequency shifted) into the result from the FFT. Fortunately, this will be
evident when you look at the transformed signal, so you may need to retry
the simulation for a different interval.

Let’s use a variation on the circuit for the Fourier decomposition example to demon-
strate Fourier transforms in Probe.

* Fourier transform example

il 0 1 sin(O0 .57 1000)

rini 0 1

ed 2 0 poly(l) (3,0) 010 -1

Sec. 10.6 Fourier Transform 11

r3 2 0 1G

.tran S0u 10m 0O S0u
.probe

.end

This circuit is the same as before, except that a current source is used to create the
input voltage. This will make it easy to add in other signals, say, to show intermodula-
tion effects. The transient simulation is run for 10 milliseconds, or 10 cycles, so
that the frequency resolution will be 1/10 of the fundamental frequency. The time
step is limited to 50 microseconds, or 1/20 of the cycle time, so that the frequency
band, from zero up to the Nyquist critical frequency, will extend to about 10 times
the fundamental frequency (actually set by the number of data points selected by
Probe, but this will always be at least as large as the number of points in the
waveform data). By running the simulation and then looking at the results with
Probe, we see the input voltage in the time domain (see Fig. 10.3).

By selecting the X-axis menu and Fourier menu item, we can look at (after
some delay for calculation) the signal’s spectrum in volts per root hertz, since the
signal is in volts (see Fig. 10.4).

Some comments are required here to help you interpret the results of the
transform:

The total power (or mean-square amplitude) of the signal is the same whether

it is represented as a time-domain function or transformed to be a spectral-

domain function (this is a result of Parseval’s theorem). For example, if you
want to know how much power there is between two frequencies then you

LE& ------------- R T S EDECEEEEER B R T
B.SV‘i"n'" '|| 'x’{»i', |'{\". '»‘F\'{ 1'{‘1!‘; 'l"m!", ' iﬁ'[' iﬂi ' W:L
N Tt T A A N R N R R A
| ' \ / o b \ F
: f L U | I
8.0 ~\‘['G<¥-“5"’- R
b % Lo i {

JI!

||I .

&
B
S
e
o
T——
=

/ |] |

S AR VA VA VT S UNCHE TRt T

| S s - FV R +
Bns 2ms 4ns bms Bms 16ms

o V(1)
Time

Figure 10.3 Plot of input signal (time domain).

112 Distortion and Spectral Analysis Chap. 10

B T T TS

_{ i + R . .
—t

8.8KH 2.8KH 4.8KH 6.6KH 8.8KH 18.6KH 12 .8KH
o W)

Frequency

Figure 10.4 Plot of input signal (spectral domain).

integrate the square of the spectral amplitude between those two frequencies.

The result from a discrete Fourier transform, such as the FFT, is not the
same as the continuous Fourier transform values sampled at the same frequen-
cies. Due to the lack of resolution of the DFT, each data point of the transform
is actually the level of a “*bin’’ (in frequency, for the transform of a time
value) which extends halfway to the adjacent data points, with an area approxi-
mately the value of the area under the Fourier transform for the same range
of frequencies.

Accordingly, the Fourier transform of a sine wave results in a delta function,
that is, an infinitely high ‘‘spike’’ of zero width, at the frequency of the sine
wave, whose area represents the amplitude of the sine wave. For the DFT,
or FFT, of the same sine wave, the ‘‘spike’’ has finite height and non-zero
width, but the area is approximately the same. If more samples are used for
the DFT then the transform has more resolution (it becomes more like the
continuous Fourier transform) and the DFT “‘spike’” gets taller and narrower,
its area converging to the value of the delta function.

For other sections of the spectrum (those not containing single frequency signals)
you may as well consider the DFT, or FFT, result to be the sampled value
of the Fourier transform at that frequency.

These caveats are not unique to discrete Fourier transforms; similar precautions
apply to the use of some types of spectrum analyzer equipment.
However, the waveforms that result from computer simulations generally do

Sec. 10.6 Fourier Transform 113

not have continuous spectra. This is because the stimulating waveforms are generally
pure, such as a sinusoidal waveform, or have a definite set of harmonics, such as
a pulse. There is no broadband source, for transient response, available in the simula-
tor. And since nonlinear circuits can convert only single frequency combinations
into other single frequency combinations, the output waveforms will always contain
only individual and distinct frequencies (like spectral lines, to use the analogy to
light). Any response between these frequencies, as calculated by the FFT, is due
to numerical noise in the interpolation and transform operations. So, we ignore
the results of the FFT in these areas.

Now, since we are going to be looking at only the ‘‘spikes’” in the transform
results, there is no sense in manually calculating the area of these to find the signal
power of each. The height of the ‘‘spike”’ is proportional to the number of samples
going into the transform, so Probe scales the result for you. This means the height
of the *‘spike’’ is really the calculated spectral amplitude, and this will not vary
with the number of samples put into the FFT. For our example, the height of the
“‘spike’” is 0.5676, which is within 0.5 percent of the amplitude we set for the
sine wave in this example.

Looking at the transform of v(2) we see the third harmonic “‘spectral line”’
(see Fig. 10.5). Measuring the ‘‘spike’” at 1000 hertz we get 0.4293 which is,
again, within 0.5 percent of the value we obtained using the harmonic decomposition
(.FOUR statement). For the ‘‘spike’” at 3000 hertz we get 43.16E-3, which is low
by 7 percent from the value obtained using the harmonic decomposition. This error
may be improved by using more samples.

6BBMY4 - -~ -~ R et TR droememen R S pnETEEEEEE Raat e L e —+---4
i . i
i ;
: i
{ ;
| |
W.}. . 1
i i
] |
! !
; i
205-“'!' S | +
1 1
|) |
B l ey + + " —t
@.8KH 2.6KH 4.01H 6.0KH 8.8k 18.8KH 12.8KH
o U(2)
Frequency

Figure 10.5 Plot of output signal (spectral domain).

114 Distortion and Spectral Analysis Chap. 10

The primary source of error in the transform comes from the interpolation
done by Probe to obtain evenly spaced samples, that is, the time points in the
transient run did not occur at the right places (this need not be true of transforms
of a frequency analysis, where you can control the analysis interval). Using interpo-
lated values is fine so long as you realize that this ‘‘smooths’’ the results, which is
a way of saying that the signal is being processed, before being transformed, by
a low-pass filter. This filter’s transfer ratio is unity at DC, zero at the Nyquist
critical frequency, and some value in between. This is why the results we obtain
for harmonic magnitude using the FFT in Probe are always lower than the results
from the .FOUR statement. The effective bandpass of this ‘‘smoothing’” filter is
increased by using more samples in the FFT, which means forcing PSpice to take
more time-steps.

Exercise 10.6.1

Improve the accuracy of the measurement of the third harmonic by doubling the number
of steps in the Fourier transform. You will do this by decreasing the maximum step
size of the transient simulation. Notice that the X-axis extends to twice the range as
our example. How does the new ‘‘spike’” at 300 hertz compare with the value from
the harmonic decomposition?

10.7 INTERMODULATION DISTORTION

Having just tried an example of calculating spectral values, let’s broaden our scope
to calculate intermodulation distortion. ‘‘Intermodulation’” is the name for the process
by which any signal processor, such as an amplifer, converts superimposed signals
into signals whose frequencies are the sum and difference of the frequencies of the
input signals. The nonlinearities which cause this to happen also produce distortion
products at other frequencies, such as twice the frequency of signal A, minus the
frequency of signal B, and other such combinations. Since most of these combinations
are not harmonically related to the input signals, these distortion products are consid-
ered to be the most objectional in, say, a high-fidelity audio system. There are
many ways, or standards, for expressing the amount of distortion of this type,
however we shall look at a total calculation as a guide to any method that you
might prefer.

Using a variant of our previous example, we inject two signals into the polyno-
mial function so that the peak input barely saturates the function. Using the frequencies
of 800 and 1000 hertz to present one style of measuring intermodulation distortion,
where the input frequencies are close together, the circuit file becomes:

+*intermodulation distortion
.opt itl5=10

il 0 1 sin(0 .28 1000)

iz 0 1 sin(0 .24 a00)

Sec. 10.7 Intermodulation Distortion 115

rinl 0 1

el 2 0 poly(l) (1,0) 0 3 O -1
r3 2 0 16

.tran 50u SOm 0O SOu

.probe

.end

After running PSpice, Probe is again used to transform the results into the signal
spectra. We can display the input signal to check that the simulation and transform
went well (see Fig. 10.6). Now, we transform the waveform to show the input
spectra (see Fig. 10.7). At this time, you might want to check your calculating
skills by analyzing the input spectrum, which is known. The peaks at 800 and
1000 hertz are single frequencies, so we divide by the number of bins in the subcritical
frequency band to get the magnitude of each component:

0.2788 at 800 hertz
0.2780 at 1000 hertz

which are very close to the 0.28 input magnitude. Notice that the higher frequency
signal’s magnitude is lower, a manifestation of the ‘‘smoothing’’ filter caused by
using interpolated values. Now, looking at the output spectra, in Figure 10.8, we
see many more spectral lines. Most of these are intermodulation distortion products.
Let’s start to calculate.

i A o M M M f
”'5"1;’ mie ! 1 !J Tl ’,” 1 ‘1}" m *
§n | NN 1} L e b
a.auli wa\l Mﬁ"{'i ;' [Fl ll |“ﬁ\}A;!J tl{ilf‘!ﬂ‘ il {';lﬁ"i'!ll; {}H-(d“ || “} IL![!'I'""”!, ‘1{\'&4 .
[L
asu* AN ! :'Im"l».fi!'j..'. | h{f

Time

Figure 10.6 Plot of input signal (time domain).

Chap. 10

Distortion and Spectral Analysis

116

K s ae e S Y

16KH

8KH

6KH

4KH

Frequency

Figure 10.7 Plot of input signal (spectral domain).

T e meee T STLTTL R et o

ZKH

BKH

a V(2)

Frequency

Figure 10.8 Plot of output signal (spectral domain).

Sec. 10.7 Intermodulation Distortion 117

First, we calculate the magnitude of the fundamental outputs:

0.2296 at 800 hertz
0.2298 at 1000 hertz

Then, there is harmonic distortion, most of which is at the third harmonic of the
input:

5.240E—3 at 2400 hertz
5.102E—3 at 3000 hertz

These combine to yield harmonic distortion of
(0.005240% + 0.005102%)"2/(0.2295 + 0.2287%)'? = 2.25%

which looks good. Even though the signal reaches the cllpplng level, the individual
distortion energies do not amount to much.
Finally, there is intermodulation distortion;

16.43E—3 at 600 hertz

16.29E—3 at 1200 hertz
15.58E—3 at 2600 hertz
15.54E—3 at 2800 hertz

These combine in the same root-sum-square fashion to yield
(0.01643 + 0.01629% + 0.15582 + 0.01554%)172/(0.2295% + 0.2287%)!2 = 9.83%

which is about four times the combined distortion energy of the harmonic distortion.

CHAPTER 11

Device Models

Device models (or just ‘‘models’’) are SPICE’s way of collecting the operating
characteristics of a circuit element (‘‘device’’). So far we have worked only with
fairly simple devices, such as resistors and capacitors, and even these devices can
make good use of having a model. But especially for active devices, such as diodes
and transistors, it is essential to collect the numerous parameters that describe how
the device will behave and then refer to that particular set of parametric values by
a shorthand name. This lets you label each instance of the device, in the circuit
file, by a name that is convenient and mnemonic. Furthermore, when you decide
to change the model parameters, this needs to be done only in the device model and
it will affect all of the devices in your circuit file which refer to that model.

11.1 THE .MODEL STATEMENT

The .MODEL statement sets aside a set of parametric values for reference by devices
in PSpice. Not every device needs a model; for example, resistors that do not refer
to a model are assumed to have a constant resistance value for all simulations.
Every device which does refer to a model must have that model defined, which
means it needs to have a .MODEL statement that completes the description for
how the device will operate. The syntax for the statement is

.MODEL <name> <type name> ([<parameter name> = <value>]*)

The first <name>> is the shorthand label or ‘‘model name’’ that you want to refer
to the device as. Often this is a manufacturer’s part number, such as ‘‘2N3904”°

118

Sec. 11.2 Models for 119

for a transistor, or a descriptive name, such as ““FILM’’ for a metal film resistor.
You may use any name that conforms to the naming conventions of the simulator;
they must begin with an alphabetic character, and continue with alphabetic or numeric
characters, or “__"" and “‘$’’. For example, 2N3904 is usually modified to be
Q2N3904 to fit the naming conventions.

The <type name>> is a device ‘‘type’” description, which may be one of the
following for the linear devices:

CAP for a capacitor
IND for an inductor
RES for a resistor

one of the following for the semiconductor devices:

D diode

NPN bipolar transistor (NPN)

PNP bipolar transistor (PNP)

NJF junction field-effect transistor (N-channel)
PIF junction field-effect transistor (P-channel)
NMOS MOS field-effect transistor (P-channel)
PMOS MOS filed-effect transistor (P-channel)

GASFET gallium-arsenide field-effect transistor (N-channel)
and the following for the ‘‘miscellaneous’’ device group:

CORE nonlinear magnetics
VSWITCH voltage-controlled switch
ISWITCH current-controlled switch

Any of the parameters allowed for the device model are thus defined. If you do
not include a model parameter and value, then there is a default value which will
be used instead. Usually these default values are set to a convenient value which
give a typical operation, or are set so they have no effect on the device’s operation
(which means you may ignore them if they are of no interest). Let’s look at what
these parameters can do for your circuits.

11.2 MODELS FOR PASSIVE DEVICES

When SPICE users talk about ‘‘models,”’ they are usually referring to models for
semiconductor devices. This is an important area; design groups that use circuit
simulators often maintain libraries of models for their work, and may even have

120 Device Models Chap. 11

some engineers whose only job is to develop new model sets. However, even simple
devices may have models. For example, the model for the capacitor includes parame-
ters for the following:

C which is the multiplying (scaling) factor, default value = 1
VC1 which is the linear voltage coefficient, default value = 0
VC2 which is the quadratic voltage coefficient, default value = 0

and others, which we will look at later. Already you may suspect that we will be
able to define a type of capacitor whose capacitance will vary with the voltage
impressed on the plates by setting the voltage coefficients.

To see how to use the device models, let’s recall the syntax for including a
capacitor in a circuit file, which is

C<name> <node> <node> [model name] <value>

This is different from how you are used to writing it since it includes the [model
name], which is an optional item (we have not exercised the option until now).
So, you can have a circuit with capacitors that may include a reference to a model,
as in this fragment of a circuit file:

Cs 2 7 .015

CkE 3 5§ mod cx @

C? 4 b mod ¢cx &

.model mod cx cap(vcl=.1l ¢ =.001)

In this case the value of C5 is 0.015 farads, but the value for C6 and C7 depends
on the model parameters. Their values are calculated by the formula

capacitance = <value>-C-(1 + VCI - voltage + VC2- voltage®)

This means that, with no voltage across the capacitors, the value for C6 is 0.002
farad and the value for C7 is 0.001 farad. As the voltage varies, C6 and C7 will
change their values by 10 percent per volt, where the voltage is the difference of
the first node from the second node (so it matters, now, which way you connect
the capacitor).

11.3 SCALING COMPONENT VALUES

Using the previous example circuit fragment, since C6 and C7 both refer to the
“mod__cx”’ capacitor model, you may scale their values relative to each other;
that is, regardless of the value calculated by the formula above, the value of C6
will always be twice the value of C7 (not strictly true, since this example shows a
capacitor model which is also voltage dependent). You may shift the values of a

Sec. 11.3 Scaling Component Values 121

whole set of capacitors in your circuit without changing their relative values, by
changing the model to, say

.model mod cx cap(vc=.1l c=.002)

to double their zero-bias values to 0.004 and 0.002 farads, respectively.
Another way to set up capacitors that scale is to start with the actual component
values you would normally use; for example:

cs 2 ? .015

Ct 3 5 mod_cx .002

C? 4 b mod cx .001
.nodel mod_cx cap(c=1)

so that the values for C6 and C7 are still 0.002 and 0.001, respectively, because
the multiplier parameter is now 1. Then, should you decide later to increase the
values for the ““cmod’’ capacitors by 10 percent, you would change the model to

.model mod cx cap(c=1.1)

You may use as many models as you like in a circuit file, although each component
may refer to only one model. If you are crafty, you may find ways to set up
“*generic’’ circuit blocks, such as filter modules, which are customized by setting
the value of the multiplier parameter.

As you might have suspected, the resistors and inductors in PSpice may have
models also. Just like the ““C’’ multiplier:

R s the resistance multiplier parameter in the RES model
L is the inductance multiplier parameter in the IND model

This means we could have used scaling models for all of the elements in our LC-
filter example, as shown for one of the filter sections:

R2 1 4 rmod 1

L2 465 1lmod 1

c2 5 0 cmod 1

.model rmod res(r =100)
.model 1lmod ind(1l = 10m)
.model cmod cap(c = 1lu)

If we did this correctly for all of the filter sections, we could shift the natural
frequency of the filters while keeping the same “*Q’’ values.

122 Device Models Chap. 11

11.4 SWEEPING COMPONENT VALUES

In PSpice, the .DC statement has been generalized to sweep model parameters
which in turn will sweep the component value, as well as (normally) sweeping
voltages or currents. This is done by extending the meaning of <source name> to
include references to model parameters; for example:

.DC vin 2 12 2

sweeps the value of the voltage source ““vin”’ from 2 volts, to 12 volts, in 2-volt
increments. By example, we could also sweep the resistance multiplier in “rmod”
with the following circuit file fragment:

R? 4 b rmod &
.model rmod res(r =100)
.DC res rmod(r) 100 150 10

which will sweep the ‘“‘R” parameter of the ‘‘RES’ model named ‘‘RMOD,”’
starting with R = 100, in increments of 10, until R = 150. This will change the
multiplier for R7 and any other resistors that reference this model.

11.5 TEMPERATURE ANALYSIS

Another common way to check a circuit is to operate it at different temperatures to
verify that certain performance standards are met. SPICE and PSpice both include
a control statement of the form

.TEMP <value> . . .

with a list of values specifying the temperatures, in degrees Centigrade, at which
all of the other analyses (such as DC, AC, etc.) are to be run; that is, the .TEMP
statement acts as an “‘outer loop”’ for all of the other analyses. When the temperature
is changed, PSpice recalculates internal values using the new temperature (e.g. the
noise contribution for resistors involves the factor 4 - k- T) and also makes adjustments
where the device models have a temperature dependence. For example, the device
models of the capacitor, inductor, and resistor all have parameters for temperature
dependence, which are

TC1 a linear dependence on the change in temperature, in % per °C
TC2 a quadratic dependence on the change in temperature, in % per °C?

so that, just looking at the temperature-related factors, the formula for the value of
a resistor with a model is

resistance = <value>-R-(1 + TC1-(T — Ty) + TC2-(T — To)?)

Sec. 11.6 Sweeping Temperature 123

where T is nominally 27°C (which may also be set, using the .OPTIONS statement,
though this is rarely done). The capacitor and inductor follow the same form. Other
devices, such as transistors, have temperature dependencies built into the (more
complicated) physical models for these devices, so that the user does not have to
include the factors directly for operation at different temperatures.

11.6 SWEEPING TEMPERATURE

Very much the way PSpice is able to sweep component values, you may also have
PSpice sweep the value for temperature. The calculations that are done are the
same as those for the .TEMP statement, however the simulation is done as a DC
sweep so that graphical results are available to Probe. Moreover, since you are
allowed to nest a DC sweep within another, you will be able to sweep a source or
component value while stepping the temperature (or vice versa)!

The form of the DC sweep statement to sweeping temperature is similar to
what we have used for sweeping component values; for example:

.DC TEMP 30 50 §

will sweep temperature, called ‘““TEMP’’ by PSpice, from 30°C to 50°C in 5°C
increments.

CHAPTER 12

Active Devices

Active devices, such as diodes and transistors, are at the heart of why SPICE was
developed and became so successful. The behavior of these devices constrains the
mathematics and nqmemcs of the simulator, and only a few of the algorithms that
could be used have’ proven“Successful in the face of the large changes in conductance
that active devices un(Tergo in normal circuit operation.

In this chapter we will take a qualitative tour of the models in PSpice (which
are compatible with the devices in SPICE2.G6). The tables of parameters (with
their names, description, units, and default values) will not be in this chapter, as
your, SPICE manual will have these (there are some in Appendix B of this bogk). .
Neither will you find the full set of equations for each dev1 e, which tend to obscuré
the external operation with which the user is familiar.JInstéad we will focus on the
terminal characteristics that electrical engineers know and show how the equations,
with their copious parameters, describe and model these characteristics.

Kd(,)

12.1 ACTIVE DEVICE MODELS

The semiconductor diode is usually the first active device students learn about; its
ability to change resistance and sthch depending on current direction, is the basis
for most beginning electronics Sottses. Tho? courses, including semiconductor
physics, will trace the development of the cele rated Shockley equation controlling
pn junction current, which is

124

Sec. 12.1 Active Device Models 125

junction current = I+ (eV* 79 — 1)

It is sets of equations, like the Shockley equation, that define the operation of
active devices for SPICE. One of the options for the PSpice program is the source
code for the routines containing these equations (albeit in a form that is efficient
and suitable for the simulator) should you want to try different physics.

The parameters that are available through the .MODEL statement are ones
that appear in the controlling equations for the device. For example, in the Shockley
equation, the parameter ‘IS’ may be specified in the diode model. Of course, k
and g are physical constants, and *“T"" is specified as the temperature for the simulation.
In this way the user controls the device operation without writing new equations
for each device.

Models for active devices are similar to those for passive devices, just more
complicated in the conductances and currents that are calculated. For SPICE, it is
not enough to consider, say, forward current gain for the bipolar transistor as an
isolated feature of that device. All of the operating characteristics must be combined
into a unified model, since SPICE is not capable of knowing when to discard effects
that, for the circuit condition at hand, are negligible (which, of course, is a time-
honored engineering practice). All of the characteristics that affect the calculation
of conductance, transconductance, current, et cetera, must be present each time
the device is evaluated. This means that device operation, which we normally split
into operating ‘‘regions’’ (for example, ‘‘saturation’ or “cutoff’’), becomes one
continuous set of formulas. It is difficult to develop device models that behave this
way.

The benefit, for the SPICE user, is that all of the device characteristics can
be included in the simulation (of course, you may choose to ignore some characteris-
tics). Often you find that a circuit that you expect to work does not simulate the
way you expect because it has ‘‘been had’’ by some device characteristic that you
overlooked during design. This is the purpose of SPICE: to verify the operation of
a circuit (after all, the simulator is dumb and will not be misled by what you
intended the circuit to do). This is why you want models that are complete enough
to not only simulate your circuits when they behave as you expect, but also to
show you when they don’t. So, the models are important.

There is only one model, in SPICE, for each device type. This model is the
full nonlinear set of equations describing currents, conductances, and capacitances.
New SPICE users often wonder if, for AC analysis, the simulator uses a hybrid-pi
model for the bipolar transistor. It does, but it is imbedded in the nonlinear equations,
which are used to arrive at the bias-point for the circuit and then the conductance,
transconductance, and capacitance values are saved for use by the AC analysis
section of the simulator. Think of it as PSpice calculating a hybrid-pi model for
each transistor in the circuit. But the topology internal to the transistor is the same
for transient and AC analysis. For the latter analysis, the small-signal values are
calculated and used.

126 Active Devices Chap. 12

12.2 SEMICONDUCTOR DIODE

The diode model in PSpice, as mentioned before, contains a nonlinear current source
which follows the Shockley equation:

Id=1Is- (V™ V0 — 1) |
where
Vd is the voltage across the junction
Vt is the thermal voltage (k- T/q)

to model the current-voltage effects of the semiconductor junction. This does not

include the nonideal operation of real diodes. For example, at low currents (less

ghim 1nA), other semiconductor processes that inicrease the flow of currents become
““fioticeable. As a practical matter, these are small currents which are ignored by
SPICE.

As you can see in Figure 12.1, by setting IS to different values you can
obtain the characteristics of (i) a Schottky-barrier diode, and (ii) a silicon diffused-
junction diode. High-current effects are modeled, gro’_sfs_lx,‘ by including a series
resistance which is intended to combine the effects of bulk resistance (the material
on each side of the junction) and high-level injection. At high currents the observed
diode current stops following the Shockley form

Id = Is- eV¥® V0

688nY

P N
l
L]
b
y
o e e
t
1
|
T o,

oo
L3
A
A
t
1
)
[
3
1
B!
I

488nY T o :
" - = St
i - 1

’ !

) -t i

) e '
ZBBnU+ . P ot
o !

| a

1 I

! I i

N L —H-mmemo oo R oo e R LT +
188nA 1.8u 18uf 188un 1.8m4 16mA 168mA

o VU(SB) = V(Si)
Id

Figure 12.1 Plot of device current versus voltage using IS values typical for
Schottky-barrier and diffused-junction diodes.

Sec. 12.2 Semiconductor Diode 127

and approaches a modified form

Id=1Is ,eVd/(2'n‘Vt)

Again, for practical reasons (SPICE’s emphasis is on integrated circuits, which
rarely develop such large currents in normal operation), the simulator does not
include this modified form. Instead, SPICE has only the series resistance parameter,
RS, available for more limited modeling of this effect. It is not so important to
model the effect accurately as to make a provision for the effect so it is available
to indicate abnormal operation.

As you can see in Figure 12.2, by setting RS you can limit the exponential
effect of the Shockley equation and the device becomes resistive.

For reverse operation, the value of *‘Is,”” which the Shockley equation asymptoti-
cally approaches, is usually too small a value as real devices have leakages which
allow current across the junction. To help model this, as well as improve the operation
of the simulator, a minimal conductance is connected in parallel with the junction.
The value of the conductance is set by the GMIN option (see your user manual for
details of the ‘. OPTION’’ statement).

As you can see in Figure 12.3, the reverse diode current deviates from the
Shockley equation due to the GMIN conductance in parallel with the junction.
Reverse breakdown, as found in Zener diodes, is modeled by another exponential
form

— Ibv,e—(Vd+Bv)/Vt

breakdown current

[e

186uf

R v

V(i)

Figure 12.2 Plot of device current versus voltage for different values of RS.

128 Active Devices Chap. 12

Z.W
]
|
!
1.6pA:
B
i
gl
n: ' R
-1, Bpft--- - e T S T S +
1.V 8.8V 8.6V -8.4V -8.2v a.e .2V
o [(d1) = (.ipA)*(exp(Vd/.8259)-1)

Ud

Figure 12.3 Piot of device reverse current versus voltage and Schockley equation.

which gives the correct, but not exact, effect of reverse breakdown. One problem
is that semiconductor junctions have more than one breakdown mechanism, and
these processes can occur at the same time. Again, as a practical matter, SPICE
does not attempt to model the ‘‘blend”’ of processes; the simple form serves most
engineering purposes. Any particular breakdown curve could as easily be modeled
over a wide range using a controlled-current source defined by the user.

Figure 12.4 shows both forward and reverse operation. Note that this figure
uses extraordinary parameter values to exaggerate the differences from the Shockley
equation. Diode capacitance is modeled by a voltage-dependent capacitor, which is
connected in parallel with the nonlinear current generator described previously, to
represent the charge storage effects of the junction. There are two components to
this charge: (i) the reverse-voltage capacitive effect of the depletion region, and
(ii) the forward-voltage charge represented by mobile carriers in the diode junction.

Reverse-voltage capacitance follows the simple approximation that the depletion
region (the area of the junction that is depleted of carriers) serves as the gap between
the “‘plates’” of a capacitor. This region varies in thickness, and therefore the capaci-
tance varies with applied voltage. For a step (abrupt) junction, or linearly graded
junction, the capacitance approximation is

capacitance = Cjo/(1 — Vj/phi)M

where Cjo is the zero-bias value, “‘phi’’ is the junction barrier potential, and “‘M”’
is the grading coefficient which varies (' is used for step junctions and Y5 is used
for linearly graded junctions, and most junctions are assumed to be somewhere in
between).

Sec. 12.2 Semiconductor Diode 129

SBBmAL - - —----- ommmmem e Ammmmmmmmmmn Hommmme oA R EDEEEENEE +
1 1]
| f |
‘ | :
] | 1
! / E
' ! |
i f' j

BmA ! / i
.1_ I. P Y S +
b ;
L !
- ’
b i
L :
| g
N :
H :
' :

BBt - e e - —mmmmmomaaan S SORGREELEES R e mmmeee Arommmemes +
.0 4.8V -2.8v B.8y 2.0 4.0V 6.80

o I(d1)
Ud

Figure 12.4 Plot of *‘full range’’ device current versus voltage (using exaggerated

values).

There is often confusion about the barrier potential, “‘phi,”’ which appears in
the capacitance equation. From capacitance measurements ‘‘phi’’ takes on a value
of nearly 0.7 volts for regular (silicon) junction diodes, and a range of 0.58 to
0.85 volts for various Schottky-barrier diodes. This value sometime gets confused
with the forward-current voltage drop of the diode, and sometimes gets confused
with the energy gap of the material.

As you can see in Figure 12.5, varying M will generate a variety of reverse-
bias capacitance characteristics. Some inspection of the capacitance formula reveals
that it predicts infinite capacitance for a forward bias, which is not the case for a
real junction. Several depletion capacitance formulas have been proposed which
more correctly fit observed operation, however SPICE uses a simple approach: for
forward biases beyond some fraction (set by the parameter FC) of the value for
“‘phi,”” the capacitance is calculated as the linear extrapolation of the capacitance
at the departure. This provides a continuous numerical result, and does not affect
circuit operation significantly because for forward bias the device capacitance is
normally dominated by diffusion capacitance.

The diffusion charge varies (and therefore capacitance) with forward current
and is simply modeled as a “‘transit time’’ for the carriers to cross the diffusion

region of the junction. The total charge is
diffusion charge = device current - transit time

and capacitance is the derivative, with respect to bias, of this

diffusion capacitance = TT - Is/(n - Vt) - "4 V0

130 Active Devices Chap. 12

™
3

I R EAREEEEE e

oy
*

a--

—__TF

6 S8 4N 3N 2.8 -1 B8 L
o 1) = 1d2) - 1(d3)
et

Figure 12.5 Plot of junction capacitance versus voltage.

Difffusion charge manifests itself as the ‘‘storage time’’ of a switching diode, which
is the time required to discharge the diffusion charge in the junction, which must
be done before the junction can be reverse-biased (switched off). Storage time is
normally specified as the time to discharge the junction so that it is supporting
only a fraction (typically 10 percent) of the initial reverse current. First, a forward
current is supplied to the device to charge the junction. Then, as quickly as possible,
a reverse current is supplied to the device. Internally, the junction is still forward-
biased to a voltage nearly the same as before the switch in current; the junction is
still conducting at the forward current rate. This internal current adds to the external
current as the total current discharging the junction. As the junction voltage decreases,
the internal current falls off exponentially (according to the Shockley equation).
The system is a relatively simple differential equation which can be solved to an
explicit equation for the TT parameter (assuming complete discharge) as follows:

transit time = storage time/In((ip — ig)/—ig)

As you can see from Figure 12.6, the diffusion charge dominates the reverse recovery
characteristic of the diode. During the last part of the recovery, as the junction
becomes reverse-biased, the depletion capacitance dominates. This causes the small
tail at the end of the discharge cycle. Total capacitance is taken to be the sum of
these capacitances: the depletion approximation dominates for reverse bias as the
device current is small, and the diffusion approximation dominates for forward
bias as the device current is large.

Sec. 12.3 Junction Field Effect Transistor (JFET) 131

By ---------- ueemnonna- memmmmeen R TEEEERE D R Hrommommeeee +
H : :
H i
i i
o B
E i
E i
(WY !
1. +
: :]
H [:
| g |
: B |
i . :
a | e
~ 2B - - m e R ECTT R mmmmmneen drmmmmmmnnn . grmmmmmmnnnn +
~18ns -Gns Bns Sns 1fns {GSns 28ns
o I(d1)
Tine-Sns

Figure 12,6 Plot of reverse recovery current (transient analysis).

12.3 JUNCTION FIELD EFFECT TRANSISTOR (JFET)

The JFET is the simplest of the transistor devices. In this device the increase in
the depletion region by gate junction bias ‘‘pinches’’ the channel, increasing its
resistance to drain current. It is known as a ‘‘square law’’ device because of the
expression relating drain current to gate junction voltage:

Id = beta - (Vgs — Vto)?

While actually an approximation of the transfer function given by the exact analysis
of channel charge, this is almost universally used (see Fig. 12.7). Another way of
arriving at the same square law relation is by making the approximation that the
gate junction capacitanct is a linear function of the gate junction voltage (which in
turn describes how the channel region is modulated). As we saw for the diode,
reverse-bias capacitance is not a linear function but it may be approximated that
way for biases much larger than the barrier potential (‘‘phi’’) of the junction. The
error associated with using the square law form happens to be quite small (when
compared to exact analysis as well as real devices). The square law result applies
only when Vds is greater than Vgs-Vto (the ‘‘pinch-off’” voltage), when the channel
of the FET is ‘‘saturated.”” When Vds is below pinch-off, the expression relating
drain current to gate junction voltage is

Id = beta - (2-(Vgs-Vto)-Vds — Vds?)

which describes (on an Id versus Vds plot) an inverted parabolic curve passing
through the origin and which, at its peak value (when Vds is at pinch-off), intersects

132 Active Devices Chap. 12

4BwAy - oo Ao EGDEEEEETEEE EREELEEEE Srmmmemeeees +
5 / !
] I 1
i / |
| =
owit a 1
] .y" i
! / !
i / |
20w / l
1 e -t
1]
| / i
| / 1
i !
| |
lM.!. .) . .?.
' _ /./ t
(WY ' l S - SRR NR— +
5. -4.0 -3.80 -2.V -1.8v 8.8
o H(j1)
Ugs

Figure 12.7 Plot of drain current versus gate-source voltage.

the square law formula. This parabolic region of operation is called the ‘‘linear”’
region; for small drain voltages, the expansion of the equation (above) is dominated
by the linear term

Id = 2 - beta - (Vgs-Vto) - Vds

Finally, Ids is zero when Vgs is less than Vto (see Fig. 12.8).

Real JFETs, in the saturation region, are not ideal current devices since their
drain currents vary with drain voltage. This effect is modeled by the device parameter
LAMBDA, which sets the output conductance

Id = BETA - (1 + LAMBDA - Vds) - (Vgs-VTO)?

which yields an increasing current for increasing values of Vds, as shown in Figure
12.9.
Since transconductance is

dld/dVgs

we can readily relate BETA to transconductance by differentiating the drain current
formula to get

transconductance = 2 - BETA - (1 + LAMBDA - Vds) - (Vgs-VTO)

The capacitances of the JFET follow the form we saw for the diode. Both
the gate-to-source and gate-to-drain junctions have a nonlinear capacitor. The zero-
bias capacitance value is selected for each junction. When these junctions become

Sec. 12.3 Junction Field Effect Transistor (JFET)

108m+ —---=--- N i —-ommmee +ommmnn et B +
‘Linear / saturation !

’ i+~ Locus of pinchoff !

i . . !

i

w7 ;
i

;

—

P BrO—— - E— B — Bra— r—
8.V 1. 2.8y I 1. 5. 6.0 7.0 8.

o 14(J1)
Vds

Figure 12.8 Plot of drain current *‘curve family,”’ with locus of pinch-off voltage.

1064+ omnmoas —+emeamas +emeennn b +
]

. :

)

5o 1
._._.__._,_‘____.—.—, T . +

:

I

i

£

8.0V . . . 4.8v S.v 6.8V 7.0 8.8V

Uds

Figure 12.9 Plot of drain current ‘‘curve family™ showing output conductance

in saturation region.

133

134 Active Devices Chap. 12

forward-biased, the straight-line extension of capacitance is used (just like the diode).
However, there is no provision for diffusion charge in the junction since JFETSs
are rarely used in a mode that has either junction forward-biased.

12.4 GALLIUM-ARSENIDE MESFET (GaAsFET)

The GaAsFET is a Schottky-barrier gate FET, or MESFET (for MEtal Semiconductor
FET), made of gallium arsenide (the ‘‘GaAs’’ comes from the chemical abbreviation
for the material). The primary advantage of GaAs over silicon is its electron mobility,
which is six times greater (mobility is the speed of electrons in the material for a
given electric field, which propels the electrons). This is an advantage of GaAs
that is important for high-frequency electronics. At present the major drawback to
GaAs is the difficulty in processing and manufacturing devices, however these prob-
lems are being solved quickly due to a large market for high-speed devices in
computing and defense electronics. Soon the fastest computers, using GaAs devices
in modules designed using PSpice simulations, will be simulating tomorrow’s circuits.

The GaAs MESFET operation is like the silicon MOSFET. An insulating
layer between the gate and channel is provided by the potential barrier formed at
the contact of two materials, in this case a metal gate and GaAs substrate. Similar
to the MOSFET a channel charge is induced to create a conducting path under the
gate, connecting the drain and source of the device. However, the detailed device
operation is different in that in GaAs the electron velocity ‘‘saturates’’ for an electric
field roughly ten times lower than in silicon. Thus the saturation in drain current,
for GaAs, occurs due to carrier-velocity saturation, whereas channel pinch-off causes
this in silicon. There are several proposed models for the conductivity of the channel,
so PSpice includes both the Curtice model and the Raytheon model.

The Curtice model was one of the first to be implemented in a circuit simulator,
circa 1983, and therefore gained early acceptance. The formula for active operation,
where Vgs is greater than Vto, is

Id = - (Vgs-Vto)? - (1 + X\ - Vds) - tanh(a - Vds)

which includes both ‘‘linear’” and ‘‘saturated’’ operation and is an empirical fit
using the hyperbolic tangent function. The device capacitances for the Curtice model
are simple: the normal pn junction capacitance is used for the gate-source and gate-
drain capacitance, and a fixed capacitance is available for drain-source capacitance
modeling.

The Raytheon model (named after the employer of the developers) is a more
recent model, circa 1986, and benefits from the later research into GaAs devices.
In particular, it has two improvements over the Curtice model: (i) an enhanced
drain current formulation and (ii) a new capacitance model. The drain current formula
was modified; while the Curtice model did well for the observed change in drain

Sec. 12.4 Gallium-Arsenide MESFET (GaAsFET) 135

¥

S A S A

4.0V S. 6.8V 7.0 8.8V
Vds

Figure 12.10 Plot of drain current ‘‘curve family’’ for Curtice model.

current versus Vds, it did not do well for drain current versus Vgs. Using observed
operation, the portion of the Curtice formula

Id = B - (Vgs-Vto)*
was changed to
Id =B - (Vgs-Vto)’/(1 + b - (Vgs-Vi0))

to effect the desired operation for Vgs >> Vto. To increase computational efficiency,
the hyperbolic tangent function was replaced with a polynomial approximation

tanh(x) = 1 — (1 —x/3)3

and when x is larger than 3 unity is used (this defines the onset of device saturation).
Using Figure 12.11, compare the Raytheon model to the Curtice model.

The new capacitance model comes (again) from the problem of carrier-velocity
saturation. In theory, the gate-source capacitance should increase abruptly at the
onset of velocity saturation and the gate-drain capacitance should decrease abruptly.
In practice, velocity saturation occurs more gradually so the capacitance changes
will not be as abrupt. The Raytheon capacitance model is ‘‘charge oriented’ to
calculate the effects of velocity saturation. Once the channel charge and therefore
capacitance (as the change in charge versus voltage) is calculated, it is split into
gate-source and gate-drain capacitance values. Furthermore, these capacitance values
maintain symmetry if the device is operated in the inverted mode.

136

Active Devices

------- T T—

!

=i

H

gy

TE Fos +

8.8y 1.8 2.8 3. 4.8V 5.8y 6.8 7.80 8.8

o [d(b1)
Vds

Figure 12.11 Plot of drain current *‘curve family”” for the Raytheon model.

£

e oy e U

AW AN 3w 2N 2 LW L A5 B
o ~1d(b1) = -14(b2) - -1d(k3)
Ugs

Figure 12.12 Plot of Raytheon device capacitances versus Vds and Vgs.

Chap. 12

Sec. 12.5 Bipolar Junction Transistor (BJT) 137

12.5 BIPOLAR JUNCTION TRANSISTOR (BJT)

The bipolar junction transistor, or BJT, model in PSpice is an enhanced version of
the Gummel-Poon model. This means that it is also a superset of the earlier Ebers-
Moll model, as well as its more basic form which is usually the first model encountered
by an electrical student. You have access to all of these levels of model by the
way the Gummel-Poon parameters are set, or defaulted. Associated with this DC
model are all of the junction capacitances, which, with some care, give good AC
and transient simulation results up to microwave fequencies.

Both the Ebers-Moll and Gummel-Poon models are symmetrical, with both
forward and reverse operation (just like a ‘‘real’” bipolar transistor). Therefore,
there are forward and reverse parameters that are explicitly labeled as such; however,
some of the parameters labeled as being associated with the base-emitter or base-
collector junction are also forward or reverse parameters (respectively). This means
that of the forty-odd parameters in the bipolar model, most of them are duplicates
specifying reverse operation, or base-collector instead of base-emitter characteristics.
So, the list of parameters is not as formidable as it looks.

Using graduated models is a common way to teach transistor theory; this is
easy to do since these models trace the development of the theory of transistor
operation. First came the simple, nonlinear model described by Ebers and Moll, in
1954, which was a DC model only (that is, it did not include capacitive effects).
This is the model you get in SPICE using the default values for the BJT parameters;
the forward beta (BF) is 100, the reverse beta (BR) is 1, and IS is set to provide a
normal base-emitter voltage for a small device.

6lBmAL- - oo B s oo e oo +
i E
I i
408mh || i
il 1
| |
200mA)y +
' |
| '
amJ ------------- grmmmmmmmemmes B 4rommmmmmmas mmmmmmmoo s +
av 2V W (Y (Y 18V

o le(ql)

Uce

Figure 12.13 Plot of collector current “‘curve family’’ for the bipolar transistor.

138 Active Devices Chap. 12

To get to the next level of model, you would include the junction capacitances
and parasitic resistances for each of the terminals. The capacitance models are identical
to the ones we saw earlier for the diode, applied to both the base-emitter and base-
collector junctions; these provide correct transient/frequency response and include
diffusion charge to model switching times correctly. This includes the depletion
capacitance parameters:

CJE and CJC, which are equivalent to CJO for the diode

VIJE and VIJC, which are equivalent to VJ for the diode

MIE and MJC, which are equivalent to M for the diode

FC, which is for b-e and b-c junctions, and equivalent to FC for the diode

This also includes the diffusion capacitance parameters, TF and TR, which are
equivalent to TT for the diode.

The parasitic resistances model the bulk resistance included in the physical
construction of the device. The emitter (RE) and collector (RC) resistances alter
the terminal characteristics, decreasing the slope of collector current for low collector-
emitter voltages. The base (RB) resistance primarily affects frequency response
and noise.

The final level of model includes carrier recombination and base-width modula-
tion effects which provide the realities of gain variation. These effects are associated
with the Gummel-Poon model, although included in enhanced versions of Ebers-
Moll models, because the Gummel-Poon model treated a number of effects in a
unified manner. The terminal characteristics were not that much different between
the Gummel-Poon and earlier ‘‘enhanced’’ Ebers-Moll models, but the underlying
physics was ‘‘better.”” The SPICE user must remember that most of simulation
modeling is a curve fitting game; a variety of approaches will give the same (for
engineering purposes) simulation results.

Base-width modulation comes from the voltage across the base-emitter and
base-collector junctions. The most obvious effect is a finite output conductance, or
an increase in collector current with base-collector voltage, which was called the
‘‘Early’’ effect (after J. M. Early, who first reported the phenomenon). The forward
parameter is the Early voltage, VAF (or VA), from the following geometric interpreta-
tion: extrapolating the collector currents, in saturation, forms a converging set of
lines that intersect the negative X-axis at the Early voltage (which, however, is
expressed as a positive value). The output conductance, 1/hoe, is the slope of the
extrapolated lines.

There is also a reverse-Early voltage, VAR (or VB), sometimes called the
‘‘Late’” voltage. This parameter has the same effect, and geometric interpretation,
for reverse transistor operation (see Fig. 12.14).

Carrier recombination and leakage accounts for the decrease in current gain
at low current levels. Not all of the current flowing through the base terminal is
available for transistor action; some of it leaks off and some is lost to recombination.

Sec. 12.5 Bipolar Junction Transistor (BJT) 139

2.0V 1. 2.0 kN Y 4.0 . 6.8V 7. 8.
o letql) = Ic(q2)

Figure 12.14 Plot of collector current ‘‘curve families,” including parasitic resis-
tance and Early voltage.

Only the current that escapes these effects participates in the amplification action
of the transistor. Leakage and recombination currents have voltage dependencies
similar to the Shockley equation:

leakage current = IS, - (VY — 1)
recombination current = ISg + (V@Y — 1)

These currents are part of the base junction current, and similar currents occur in
other semiconductor junctions. For example, the semiconductor diode also has these
currents, but they are not modeled in SPICE because the effects do not matter for
most circuits; they do matter for more complete modeling of the bipolar transistor.

As a simplification, the leakage and recombination currents are combined into
a single formula:

composite (*‘lost”) current = ISE - (eVNEY9 — 1)

where ISE and NE are the values used that make the composite formula match the
combination of the previous formulas. The composite formula is the Shockley equation
for a nonideal, or ‘‘leakage,”’ diode.

In the Gummel-Poon model, this leakage diode is connected in parallel with
an ideal diode to represent the base-emitter junction. The current through the ideal
diodes takes part in the transistor action (its current is multiplied by beta to generate
collector current); the leakage diode current does not. The parameters IS/BF and
NF are the saturation current and emission coefficient, respectively, for the ideal

140 Active Devices Chap. 12

diode. The parameters ISE and NE are the saturation current and emission coefficient,
respectively, for the leakage diode. The formula for junction current, for each diode,
is

ideal diode current = (IS/BF)- (e V/NF'VU — 1)
leakage diode current = ISE- (e V/NE'VY —1)

As mentioned earlier, these currents also occur in the semiconductor diode. If you
wanted to model a diode more accurately in the low-current, forward region then
you might try using this dual-diode approach.

Forward current gain is defined as the ratio of collector current to base current.
With the leakages in the nonideal diode having an emission coefficient, NE, around
2 (the ideal diode’s emission coefficient, NF, is usually unity) the percentage of
total current “leaking” increases with decreasing current (both diodes have the
same voltage across their terminals). The remaining current available for transistor
action decreases with decreasing current and along with it the apparent beta. Here,
beta (the BF parameter) is constant but the amount of current in the ideal diode is
decreasing. .

Forward current gain will be reduced to half of BF when these two currents
are equal, and since they are in parallel the junction voltages are identical

1 @ half-beta = e(NE'ln(ISE)—NF~ln(IS/BF))/(NE—NF)

and the asymptotic slope of the reduction in forward gain, with decreasing current,
is

dHFE/d(In(Ic)) = 1 — NF/NE

Curve fitting is used to match device measurements to these equations.

We can explore the effects of ISE and NE by using Probe to display base
and collector currents. If we sweep an injected base current (using the DC sweep)
and display the logarithm of base and collector current with respect to the logarithm
of the ideal diode current, then we can see how forward beta changes over a broad
range of forward operation.

Sweeping the base current and the value for ISE, we get Figure 12.15. In
this figure the X-axis has been set to the value of the colléctor current. Now we
can plot Ic and Ib, then label the intercepts of the trace to indicate various model
parameters. Note that both axes are logarithmic. The vertical distance between the
base and collector currents is the logarithmic value of the DC beta. So we can see
that ISE sets the onset of reducing beta. '

To see this more clearly, in Figure 12.16 we display DC beta directly as Ic/Ib.
The onset of beta reduction is very clear, but it is now more difficult to relate the
curves to the model parameters IS and ISE. Similarly, we may sweep base current
and value for NE (the emission coefficient). Again, the X-axis has been set to Ic but
with a correction factor; specifically, the diodes which model the reverse character-

141

Bipolar Junction Transistor (BJT)

Sec. 12.5

.
5
i
1.8K

1.8

+
H

1.6m

1.6u

1.6n

1.8p

o les Ib

Ic

Figure 12,15 Plot of transistor currents, varying ISE parameter.

T O S S

1‘0+.---_---.-'.---.#.-----._-"‘_--.4-.;_-----------_.;_---_----_____+.-____---__--_

+
1.6K

1.8

1.6m

1.8u

1

s Ie/lb

Ic

12.16 Plot of transistor DC beta, varying ISE parameter.

Figure

142 Active Devices Chap. 12

istics of the transistor have currents which must be accounted for. Similarly, the
traces for Ic and Ib have corrections. This is done in Figure 12.17 as the traces are
shown down to extremely low currents where these corrections are significant. The
traces for base current converge at the value of the model parameter ISE with an
asymptotic slope of 1/NE. Again, the distance between the base and collector currents
is the logarithm of the DC beta. The value of NE sets the rate at which DC beta
decreases with decreasing collector current.

Of course, similar parameters are available for reverse operation: IS/BR is
the reverse saturation current for the reverse ‘‘ideal’’ diode; ISC and NR are the
saturation current and emission coefficient, respectively, for the reverse ‘‘leakage’’
diode.

Finally, the base-width modulation effects also account for the reduction in
current gain with increasing collector current, a mode called ‘‘high-level injection.”’
Charge conservation reduces the efficiency of the transistor action, with high-current
beta having a dependence on collector current of

beta = BF/(1 + Ic/IKF)

where IKF is the forward ‘‘knee’’ current. Solving this formula to find the collector
current yielding beta equal to BF/2 shows that this occurs at a collector current
equal to the value of IKF. This time the X-axis has been set to Vbe; this is proportional
to the logarithm of the base (ideal diode) current and is therefore proportional to
the logarithm of the ‘‘ideal’’ collector current (which we used in the previous figures).
If we had set the X-axis to Ic, then the trace of Ic would be a straight line, as in
the previous figures and we would not see the deviation of Ic due to high injection.

% @
1.808] }
: :

; 5

: :

0 H -t
1 []

! :

i fv
1.8pht= 4
1.8p8 1.80A 1.8uh 1.8m8 1.6a 1.0Ka

o Ic-1pA = Th+1BpA+iph
Ic-1pA

Figure 12.17 Plot of transistor currents, varying NE parameter.

Sec. 12.6 MOS Field Effect Transistor (MOSFET) 143

1.0KA+------- oo oo GEEEEEEE P e oommmmeoe
=z

W
\,

o

A\
LA

i
H
E f
) e I
e Vst
] ~ - [)
188mA +) é::éu/ - ;r,n 4'_
| gy]
i S s
: ey :
1 o — '
1 s = '
i u’u w :
| v -]
] [l - 1
18uAT S H
1 -~ L 1
: o e \
: JD ».,_l" 1
I =il _,.-.- . :
| = |
| e |
L T AT Foremommnonaas +
8.8V 8.2V 8.4V 8.6y 8.8y i
o Ie= b
Ube

Figure 12.18 Plot of transistor currents, varying IKF parameter,

Since DC beta is the ratio of Ic to Ib, the vertical distance between Ic and Ib
in Figure 12.18 is the logarithm of DC beta. We can see that at low currents, DC
beta is unity (where the traces cross) and increases to a maximum, then decreases
to unity at high currents (where the traces cross again). IKR is available to model
reverse operation in the same way.

This completes our internal model of the bipolar transistor for Gummel-Poon,
although further improvements have been made to extend the usefulness of the
model. In particular, the model includes: (i) variable base resistance, to provide
for base current ‘‘crowding’’ effects, (i) split base-collector capacitance, to model
more accurately high-frequency response, and (iii) a variable, forward transit time
to reduce frequency response at high collector currents.

12.6 MOS FIELD EFFECT TRANSISTOR (MOSFET)

The MOS modeling techniques of SPICE2 (and PSpice) were a significant improve-
ment over those in the original SPICE, as well as most other simulators. The MOS
models, and the availability of SPICE2 in the public domain, made the simulator
popular with integrated circuit designers worldwide; these two features probably
clinched the ‘‘de facto standard’’ title for SPICE2. But being widely used does not
mean the models were widely appreciated. A cottage industry grew up surrounding
SPICE2 primarily to modify the MOS models and their interaction with the circuit-
solution algorithms. Nearly every integrated circuit manufacturer has an employee,
or group, which supports an internal version of SPICE2.- Whereas SPICE2 added

144 Active Devices Chap. 12

two levels of MOS model to the original SPICE, some commercial programs, such
as HSPICE, have an additional eighteen levels of MOS model.

This dissatisfaction with the U.S. Berkeley MOS models stems, in part, from
a lack of documentation of the models themselves. There is one laboratory report,
from U.C. Berkeley, which describes the models (as planned) and, of course, there
is the model code (as built}—over two thousand lines of FORTRAN that do the
calculations. In many cases, these sources have not been enough to use the models
successfully. We will cover the formulations and parameters required to specify a
model, without going into the mathematics that are covered in the U.C. Berkeley
report (see the references at the end of this chapter).

There are three levels of model in SPICE2 (and available in PSpice):

Level 1: “*‘Schichman-Hodges’’ is a basic MOSFET model and has equations
that are quite similar to the JFET model.

Level 2: ‘‘analytic model’’ is a geometry-based model that attempts to calculate
all effects from detailed device physics.

Level 3: “‘empirical model’” is a more qualitative model that uses (as the
name would imply) observed operation to define its equations.

The arguments over MOS models usually happen over levels 2 and 3; level 1 is
normally used for large devices (discrete parts, such as signal MOSFETs and power
MOSFETs) or for the “‘first pass’’ at an integrated circuit design to check that the
circuit is connected and functionally correct.

The MOS models were set up for considerable flexibility in the use of parameters.
While conceptually it is convenient to separate each model from the others, the
equations in the code do not make this distinction for the entire model. For each
characteristic, a selection of ways are available for calculating the model: level 1
is elementary, level 2 uses processing parameters and geometry, level 3 uses measured
characteristics. For example, the level 2 method calculates threshold voltage from
the specification of doping concentration, surface state density, et cetera, so the
overall model accuracy depends on having good formulas and accurate data. However,
the level 3 method uses a measured value for the threshold voltage, so the overall
model accuracy depends on the ability of the engineer to match the characteristics
of the component with the parameters of the model. You can use mix methods; for
example, you could choose the level 2 technique for calculating threshold voltage,
and the level 3 technique for calculating drain current. It would be more accurate
to say that there are three methods, instead of models, as all of the combinations
of the modeling sections provide many unique paths for calculating device characteris-
tics.

Which method is used is determined, in part, by the model parameters specified.
For example, if the substrate doping is specified the analytic model will be used
for some calculations regardless of level. This selective calculation makes it possible
to use the empirical model even though the parameter based on measured data is

Sec. 12.6 MOS Field Effect Transistor (MOSFET) 145

not available, by calculating the parameter from process data. This approach tries
to arrive at a consistent set of parameters for the model equations. When enough
parameters are not supplied the simulator uses default values which will, at least,
provide a computable model, although probably not the model you wanted.

Level 1 is simple, like the JFET where the increase in gate-junction bias
attracts charge to form the channel and modulates its resistance to drain current. It
is known as a “square law” device because of the following expression relating
drain current to gate-junction voltage:

Id = (width/length) - (KP/2) - (Vigs-Vt0)?

See Fig. 12.19. Unlike the JFET, the transconductance parameter, KP, relates device
size to drain current. As you may recall, with the JFET it was necessary to approximate
the gate capacitance as a linear function of the gate-junction voltage (which in turn
describes how the channel region is modulated). For the MOS transistor the capacitance
is set, substantially, by the thickness of the gate oxide and the area of the gate,
neither of which vary. This forms a linear, and nearly perfect capacitor; the same
materials are used in some memory devices that store charge for a useful life measured
in decades.

The square law result applies only when Vds is greater than Vgs-Vto (the
‘‘pinch-off”” voltage), when the channel of the MOSFET is ‘‘saturated.”’ When
Vds is below pinch-off, the expression relating drain current to gate-junction voltage
is

Id = (width/length) - (KP/2)- (2 (Vgs-Vto)- Vds — Vds?)

2y oo oeee o S RREREL RaRREEEEEERS Homeemnees AGREELEEEE S ALTIELEE +
i : o i
i f i
) I 1
1 o]
1 i 1
: (.“I :
1o} o
| . i
i J]
5 ""“r E
.i. 1
| j o/ :
| / 1
| : -/ i
i . .y ;
! £ ¢
Sy . S - -+
i : '
E Vg = +3v /- :
' N)
] t
B+ t + l --------- Fommmmomee- R +
8.8y 1.8v 2.V 3. 1.0V s 6.8
o Id(M1)
Ugs

Figure 12.19 Plot of drain current versus gate-source voltage.

146 Active Devices Chap. 12

which describes (on an Id versus Vds plot) an inverted parabolic curve passing
through the origin and, at its peak value (when Vds is at pinch-off), intersects the
square law formula. This parabolic region of operation is called the *‘linear’” region;
for small drain voltages, the expansion of the equation (above) is dominated by
the linear term

Id = (width/length) - KP- (Vgs-Vto) - Vds

Finally, Ids is zero when Vgs is less than Vto (see Fig. 12.20).

Nonlinear capacitance models are available for the MOSFET regardless of
model level. Semiconductor pn junction capacitance between the substrate (bulk)
and source, or drain, is modeled the same way as for the diode (except that diffusion
capacitance is not included as these junctions are normally reversed-biased). Overlap
capacitance, the excess overlap of the gate over any of the other sections of the
device (due to the manufacturing process), is modeled as a fixed, stray capacitance
to be added to any other calculated values. Overlap capacitance may be specified
for any level of the MOS model. The remaining capacitance to be calculated is
due to the operation of the intrinsic MOSFET, that is, these capacitance values
come from the electrical characteristics of the charges in the channel and not the
physical implementation of the device.

There are two models for the channel charge related capacitances: (i) the
Meyer model, which empirically splits the total capacitance into varying amounts
between the gate and any other terminal, and (ii) the Ward-Dutton model (available
only for the level 2 model), which calculates the distribution of charge and uses a
three-terminal, nonreciprocal capacitor model. For the level 2 model, the XQC

g

g8

¥
...‘____-_—?-_.._..___—-

8.68¢ 1.0 2.ay 3.8V 4.8V 5. 6.8V 7.0 8w
a idiM1)
Vds

Figure 12.20 Plot of drain current *‘curve family,”” with locus of pinch-off voltage.

Sec. 12.6 MOS Field Effect Transistor (MOSFET)
1.M¢a—————‘ ----- T S
!] v t
1 1
E Cgb\ i
: E
| — Cos |
] s e
i T —_l_
8.54 T
i f
a e
! g . - ng
1 $ e
i i .
i ! '
B.0a+ + N + +
w 5 18V 1V)
o -ibm -id = -is
Ugs
Figure 12.21 Plot of MOS capacitance versus gate-source voltage, using Meyer
formulation.
1.0 —— oo B o mmmmme e T +
Con |
]
| :
[|
8.54] i IR A
Incre__a}ing XQC —r
e SR
Cgb‘—" A __—_5
!
s L\—— - |
R sm—— s
8.6 —m----- T T ¢ +
o sV pl. 1 15 2

s -ib+ -id e -is

Figure 12.22 Plot of MOS capacitance versus gate-source voltage, using Ward-

Dutton formulation.

147

148 Active Devices Chap. 12

parameters selects which model is used: if XQC has a value greater than 0.5 the
Meyer mode is used, otherwise the Ward-Dutton model is used. Both models conserve
charge. The charge conservation rumors are due to a bad reputation acquired by
an earlier version of SPICE2. Charge conservation is a problem of numerical integra-
tion and independent of the theory of underlying capacitance models.

12.7 NONLINEAR MAGNETICS

MicroSim developed a nonlinear magnetics device based on the Jiles-Atherton magnet-
ics model. This model is based on existing ideas of domain wall motion, including
flexing and translation, to simulate the behavior of the magnetic material and thereby
generate B-H curves. The slope of the B-H curves then set the inductance and
current values for the windings associated with the magnetic core. The model accounts
for the following nonlinear effects: initial permeability, saturation of magnetization,
hysteresis (including coercivity and remanence), and dynamic core losses.

The Jiles-Atherton model supposes that the magnetic material is made up of
loosely coupled domains which have an equilibrium B-H curve, called the “‘anhys-
teric.”” This curve is the locus of B-H values generated by superimposing a DC
magnetic bias and a large AC signal which decays to zero. It is the curve representing
minimum energy for the domains and is modeled, in theory, by

Ma = Msat- F (Heff/a)
where Heff = H + alpha-M
F(x) = coth(x) — 1/x

and Ma is the anhysteric magnetization
Msat is the saturation magnetization
Heff is the effective magnetizing influence
a is a shape parameter
alpha is a field parameter

For a given H (magnetizing influence) the anhysteric magnetization is the global
flux level the material would attain if the domain walls could move freely. Instead
the walls are stopped, or pinned, on dislocations in the material. The wall remains
pinned until enough magnetic potential is available to break free and travel to the
next pinning site. The theory supposes a mean energy required, per volume, to
move domain walls. This is analogous to mechanical ‘‘drag.”” A (simplified) equation
of this is '

change in magnetization = potential/drag

or

Sec. 12.7 Nonlinear Magnetics 149

dM/dH = (Man — M)/k
where k is the pinning energy per volume (drag)

So much for irreversible domain wall motion. Reversible wall motion comes from
flexing in the domain wall, especially when it is pinned at a dislocation, due to the
magnetic potential (that is, the magnetization is not the anhysteric value). The theory
supposes spherical flexure to calculate energy values and arrives at the (simplified)
equation

dM/dH = C-d(Man — M)/dH

which must be added to the previous state equation. In Figure 12.23 you will see
both the major B-H loop (where the magnetization is brought near to the positive
and negative saturation value of the material) and some minor loops (where the
magnetization is varied about an offset value). The locus of B versus H depends
on the history of the material and does not follow the same path the way, say, a
diode’s DC current follows its DC bias voltage. This is one of the reasons that
make magnetic materials difficult to model: there is not a single, explicit equation
for B versus H.

Magnetic materials are used in inductor and transformer cores to provide high
values of inductance in a small volume and to “‘trap’’ the majority of the magnetic
flux within the windings for efficient energy transfer. Unfortunately, the materials
are also nonlinear, which means that since the value of dB/dH (the slope of the
curve) is proportional to the inductance of the component using the material as its

= Bk1)

H(k1)

Figure 12.23 Plot of B-H curve showing major and minor loops (ferrite material).

150 Active Devices Chap. 12

core, the inductance therefore varies with the current through the windings. This
effect can be seen more vividly by directly displaying, with Probe, the slope of
the major loop. Notice how the trace starts at a low value, at H = 0; this value is
proportional to the initial inductance of the material (see Fig. 12.24).

Air gaps are available in the model. If the gap thickness is small compared
with the other dimensions of the core, we can assume that all of the magnetic flux
lines will go through the gap directly and that there will be little “‘fringing flux™
(having a modest amount of fringing flux will only increase the effective air-gap
length). In checking the field values around the entire magnetic path, we arrive at
the equation,

Hcore - Lcore + Hgap-Lgap = n-1

where n-1 is the sum of the amp-turns of the windings on the core. Also, we
know that the magnetization in the air gap is negligible so that Bgap = Hgap, and
that Bgap = Bcore. These combine in the previous equation to yield

Hcore - Lcore + Beore-Lgap = n-1

This is a difficult equation to solve, especially for the Jiles-Atherton model, which
is a state equation model rather than an explicit function (which you would expect
since the B-H curve depends on the history of the material). However, there is a

K !
H
Z.BK ¢ !)
I
¢

e —— e ————————

(Y S e
48 -39

o dB(k1)

H(kD)

Figure 12.24 Plot of dB/dH, or permeability, for major loop.

Sec. 12.8 References 151

graphical technique that solves for Bcore and Hcore, given n -1, which is to: (i)
take the nongapped B-H curve, (ii) extend a line from the current value of n-I (on
the H-axis) with a slope of -Lcore/Lgap (this would be vertical if Lgap = 0), then
(iii) find the intersection of the line with the B-H curve. The intersection point is
the value for Bcore and Hcore for the n-I of the gapped core. The n-1I value is the
apparent, or external, value of Hcore, but the real value of Hcore is less. This
results in a smaller value for Bcore and the ‘‘sheared over’’ B-H curves of a gapped
core. PSpice implements the numerical equivalent of this graph technique.

The resulting B-H values are recorded in the Probe data file as Bcore and
Happarent, since this is what the circuit “‘sees.”’

12.8 REFERENCES

For SPICE users who want to know more about the models they are using and how they
relate to the component operation, I suggest the following texts:

P. ANTOGNETTI, AND G. MASSOBRIO, Semiconductor Device Modeling with SPICE, McGraw-
Hill Company.
This new reference is a very comprehensive guide to the physics, and the derivation of
the equations, for the devices in SPICE2. If you can buy only one of the items in this
list, get this one.

Davip A. HopcEs and Horace G. Jackson. Analysis and Design of Digital Integrated
Circuits. McGraw-Hill Company.
This book has excellent sections on diode, bipolar transistor, MOSFET, and (in the latest
edition) GaAsFET models and how they relate to digital IC design. Examples and exercises
are given for both hand calculations and SPICE simulation.

IaN GETREU, Modeling the Bipolar Transistor, Tektronix, Inc., part # 062-2841-00.
This is the standard reference for a concentrated look at the development of bipolar transistor
models. The only shortcoming is the book was printed in 1976, before SPICE2 was released,
so the model development does not include the extensions of the SPICE2 bipolar transistor.
A. S. Grovg, Physics and Technology of Semiconductor Devices, John Wiley & Sons, Inc.
S. M. Szg, Physics of Semiconductor Devices, John Wiley & Sons, Inc.
The titles give these away. More physics are included in these books, which are the
standard semiconductor physics references. These texts focus on device operation and
only mention circuitry and uses in passing. While there are no references to circuit simulation,
all the derivations for the formulas SPICE uses, like the Shockley equation, are included.
D.C.JiLes, and D. L. ATHERTON, ‘“Theory of ferromagnetic hysteresis,”’ Journal of Magnetism
and Magnetic Materials, 61, 48 (1986).
For those who want the physics behind the magnetics model in PSpice.
ANDREI VLADIMIRESCU and SALLY Liu, ““The Simulation of MOS Integrated Circuits Using
SPICE2,”” Memorandum #M&80/7.
This document describes, in detail, the MOS levels 2 and 3 device equations. Get this
only if you are serious, as the text is fairly terse and knowledge of MOS device physics

152 Active Devices Chap. 12

is assumed. This document is available by sending a check for $10 payable to The Regents
of the University of California to this address:

Cindy Manly

EECS/ERL Industrial Liaison Program

497 Cory Hall

University of California

Berkeley, California 94720

B. J. Sueu, D. L. SCHARFETER, P. Ko, and M. JEnG, ‘‘BSIM: Berkeley Short-Channel

IGFET Model for MOS Transistors,”’ IEEE Journal of Solid-State Circuits, vol. 22, no.
4, pp. 55866 (1987).
This paper describes the new ‘‘level 4 MOS model in SPICE3. This model is reported
to work well for small devices and has a parameter set which may be automatically extracted
using semiconductor measurement equipment.

APPENDIX A

Abridged Summary of PSpice

Statements

This section will quickly review control statements available in PSpice as of late
1987. Each statement % simply described by its use in the circuit file, with some
comments on its use. More detailed comments are in the pages of this text, as
well as the PSpice User’s Guide (available from MicroSim Corporation).

* Comment

General forms
*(any text)

Examples

*This is an example of a comment

A statement beginning with ““*”” is a comment line and has no effect. The use
of comment statements throughout the input is recommended. For example, it is
good practice to place a comment just before a subcircuit definition to identify
the nodes:

* +IN —-IN V+ V- +0UT -0UT
.SUBCKT OPAMP 100 101 1 2 200 201

153

154 Abridged Summary of PSpice Statements App. A

; In-line Comment

General forms
(circuit file text); (any text)

Examples

R13 &k 8 10K ;feedback resistor
€3 15 0 .10 ;decouple supply

A ‘>’ is treated as the end of a line so that PSpice moves on to the next line in
the circuit file. The text after the **;”’ is a comment and has no effect.

b
AC AC Analysis

General forms

.AC [LIN][OCTI]{DEC] <points value>
+ <start frequency value> <end frequency value>

Examples

.AC LIN 101 100Hz <Z00HzZ
.AC OCT 10 LKHz 1G6KHz
.AC DEC <0 LMEG LOOMEG

The .AC statement is used to calculate the frequency response of a circuit over
a range of frequencies. LIN, OCT, or DEC are keywords that specify the type
of sweep, and <points value> the number of points in the sweep:

LIN Linear sweep. The frequency is swept linearly from the starting to
the ending frequency. <points value> is the total number of points
in the sweep.

OCT Sweep by octaves. The frequency is swept logarithmically by octaves.
<points value> is the number of points per octave.

DEC Sweep by decades. The frequency is swept logarithmically by de-
cades. <points value> is the number of points per decade.
" .DC DC Analysis

General forms

.DC [LIN] <sweep variable name>
+ <start value> <end value> <increment value>

App. A Abridged Summary of PSpice Statements 155

Examples
.DC
.DC
.DC
.bC

.DC
.DC

The
LIN
oCT
DEC

LIST

+ [nested sweep specification)

.DC [OCT] [DEC] <sweep variable name>

+ <start value> <end value> <points value>
+ [nested sweep specification)

.DC <sweep variable name> LIST <value>#*
+ [nested sweep specification]

VIN -.25 .25 .05
LIN 12 SmA —2nA O.1lmA

VCE OV 10V .SV IB OmA 1mA SOud
RES RMOD(R) 0.9 1.1 .001

DEC NPN QFAST(IS) 1E-18 1E-14 §
TEMP LIST 0 20 27 50 80 100 -50

The .DC statement causes a DC sweep analysis to be performed on the circuit.
The DC sweep analysis calculates the circuit’s bias-point over a range of values
for <sweep variable name>. See Chapter 4 for use of this type of analysis.

A nested sweep is available. A second sweep variable, sweep type, start,
end, and increment values may be placed after the first sweep. In this case the
first sweep will be the ‘‘inner”” loop: the entire first sweep will be done for
each value of the second sweep. The rules for the values in the second sweep
are the same as for the first.

sweep can be linear, logarithmic, or a list of values. If linear, the

keyword LIN is optional. The sweep type can be:

Linear sweep. The sweep variable is swept linearly from the starting
to the ending value. <increment value> is the step size.

Sweep by octaves. The sweep variable is swept logarithmically by
octaves. <points value> is the number of steps per octave.
Sweep by decades. The sweep variable is swept logarithmically by
decades. <points value> is the number of steps per decade.

Use a list of values. In this case there are no start and end values.
Instead, the numbers that follow the keyword LIST are the values
that the sweep variable will be set to.

<sweep variable name>> can be one of the following types:

Source: a name of an independent voltage, or current, source. During the
sweep the source’s voltage or current is set to the sweep value.

Model parameter: a model type and model name followed by a model
parameter name in parenthesis. The parameter in the model is set to the
sweep value.

156 Abridged Summary of PSpice Statements App. A

Temperature: use the keyword TEMP for <sweep variable name>. The
temperature is set to the sweep value. For each value in the sweep all the
circuit components have their model parameters updated to that temperature.

.END End of Circuit

General forms
.END

Examples

.END

The .END statement marks the end of the circuit. All the data and commands
must come before it. When the .END statement is reached, PSpice does all the
specified analyses on the circuit.

There may be more than one circuit in an input file. Each circuit and its
commands are marked by a .END statement. PSpice processes all the analyses
for each circuit before going on to the next one. Everything is reset at the beginning
of each circuit. Having several circuits in one file gives the same results as
having them in separate files and running each one separately. This is a convenient
way to arrange a set of runs to be done overnight.

~ _ENDS End of Subcircuit Definition

General forms
.ENDS [subcircuit name]

Examples

.ENDS
-.ENDS OPRAMP

The .ENDS statement marks the end of a subcircuit definition (started by a
.SUBCKT statement). It is good practice to repeat the subcircuit name although
this is not required. :

.FOUR Fourier Analysis

General forms

.FOUR <frequency value> <<output variable>*

App. A Abridged Summary of PSpice Statements 157
Examples
.FOUR 10KHZ V(5) V(b,?) I(VSENS3)

Fourier analysis performs a decomposition into Fourier components of the result(s)
Lof a transient analysis. See Chapter 10 for use of this type of analysis.

IC Initial Transient Conditions

General forms ,
IC < V(<node>) = <value> >%*

Examples
JIC V(@) =13.4 V(102)=0 V(3)=1Y

The .IC statement is used to set initial conditions for transient analysis. Each
<value> is a voltage which is assigned to <node> for the duration of the
bias-point calculation for the transient analysis. After the bias-point has been
calculated and the transient analysis started, the node is ‘‘released.’’

The .IC sets initial conditions for the transient analysis only. It does not
affect the regular bias-point calculation or the DC sweep.

INC Include File

General forms
INC [file name]

Examples

.INC SETUP.CIR
.INC C:\LIB\WCO.CIR

The .INC statement is used to insert the contents of another file. Included files
may contain any statements with the following exceptions: no title line is allowed
(use a comment), .END statement (if present) marks only the end of included
file, .INC statement may be used (only up to four levels of “‘including’”).
Including a file is the same as simply bringing the file’s text into the circuit
file. Everything in the included file is actually read in, and every model and
subcircuit definition, even if not needed, takes up space in main memory (RAM).

158 Abridged Summary of PSpice Statements App. A

p—

.LIB Library File

General forms
.LIB [file name]

Examples

-LIB
-.LIB OPNOM.LIB
.LIB C:\LIB\QNOM.LIB

The .LIB statement is used to reference a model or subcircuit library in another
file. If [file name] is left off it defaults to ““NOM.LIB.”’ Library files may contain
comments, .MODEL statements, subcircuit definitions (including the .ENDS state-
ment), and .LIB statements. No other statements are allowed.

Referencing a library is not the same as simply bringing the file’s text into
the circuit file. Only those model or subcircuit definitions which are called by
the circuit file are actually read in. So, only those model or subcircuit definitions
which are needed take up space in main memory (RAM).

[~ .MC Monte Carlo Analysis

General forms

MC <#runs value> [DCIACIITRAN] <output variable> YMAX
+ [LIST][OUTPUT <output specification>

Examples

.MC 10 TRAN V(5) YMAX
.MC 50 DC IC(Q7) YMAX LIST
.MC 20 AC VP(13,5) YMAX LIST OUTPUT ALL

The .MC statement causes a Monte Carlo (statistical) analysis of the circuit.
Multiple runs of the selected analysis (DC, AC, transient) are done. The first
run is done with nominal values of all components. Subsequent runs are done
with variations on model parameters as specified by the DEV and LOT tolerances
on each .MODEL parameter (see the .MODEL statement for details on the DEV
and LOT tolerances). <#runs value> is the total number of runs to do. The
other specifications on the .MC statement control the output generated by the
Monte Carlo analysis.

Exactly one of DC, AC, or TRAN must be specified. This analysis will
be repeated in subsequent passes of the analysis. All analyses that the circuit

App. A Abridged Summary of PSpice Statements 159

b

contains are performed during the nominal pass. Only the selected analysis is
performed during subsequent passes.

<output variable> is identical in format to that of a .PRINT output variable.
The keyword YMAX specifies the operation to be performed on the values of
the <output variable> to reduce these to a single value. This value is the basis
for the comparisons between the nominal and subsequent runs. YMAX is the
only reduction method currently implemented. Others will be added as user require-
ments indicate.

If the keyword LIST is specified PSpice will print out, at the beginning of
each run, the model parameter values actually used for each component during
that run.

The output from the nominal (first) run is governed by the .PRINT, .PLOT,
and .PROBE statements in the file. The output of subsequent runs are suppressed
unless requested by the OUTPUT keyword: <output specification™ is one of
the following:

ALL forces all output to be generated

FIRST <value> generates output only during first n runs

EVERY <value> generates output every nth run

RUNS <value>=* generates output only for the listed runs
.MODEL Model

General forms

.MODEL <name> <type name>>
+ ([<parameter name> = <value> [tolerance specification]]*)

Examples

.MODEL RMAX RES (R=1.5 TCl=.02 TCe=.005)
.MODEL DNOM D (IS=1E-9)

.MODEL QDRIV NPN (IS=1E-7? BF=30)

.MODEL MLOAD NMOS(LEVEL=1 VTO=.7? CJ=.02pF)
.MODEL CMOD CAP (C=1 DEV 5%)

.MODEL DLOAD D (IS=1E-9 DEV .5% LOT 10%)

The .MODEL statement defines a set of device parameters which can be referenced
by devices in the circuit. <name> is the model name which devices use to
reference a particular model. <name>> must start with a letter. It is good practice
to make this the same letter as the device name (e.g., D for diode, Q for bipolar
transistor), but this is not required.
<type name>> is the device type and must be one of the following:
CAP capacitor
IND inductor

160 Abridged Summary of PSpice Statements App. A

o

RES resistor

D diode

NPN NPN bipolar transistor

PNP PNP bipolar transistor

NJF N-channel junction FET

PJF P-channel junction FET

NMOS N-channel MOSFET

PMOS P-channel MOSFET

GASFET N-channel GaAs MESFET

CORE nonlinear, magnetic core (transformer)

VSWITCH voltage-controlled switch
ISWITCH current-controlled switch
Devices can reference models only of the correct type. A JFET can reference a
model of types NJF, or PJF, but not of type NPN. There can be more than one
model of the same type in a circuit, although they must have different names.
Following <type name> is a list of parameter values enclosed by parenthesis.
None, any, or all parameters may be assigned values. Default values are used
for all unassigned parameters. The lists of parameter names, meanings, and default
values are located in the individual device descriptions.
(tolerance specification) may be appended to each parameter, with the format

[DEV <value>[%]] [LOT <value>[%]]

These are used by the .MC analysis. LOT tolerances track, so that all devices
that refer to the same model will use the same value of the model parameter.
DEV tolerances are independent. The ‘‘%’’ indicates a relative (percentage) toler-
ance. If it is omitted <value>> is in the same units as the parameter itself.

.NODESET Nodeset

General forms
.NODESET < V(<node>) = <value> > *

Examples
.NODESET V(2) =3.4 V(102)=0 V(3)=-1V

The .NODESET statement helps calculate the bias-point by providing an initial
guess for some nodes. Some or all of the circuit’s nodes may be given an initial
guess. It is effective for the regular bias-point and the bias-point for transient
analysis. It has no effect during the DC sweep or during the transient analysis
itself.

Unlike the .IC statement, .NODESET provides only an initial guess for
some node voltages. It does not clamp those nodes to the specified voltages.

App. A Abridged Summary of PSpice Statements 161

However, by providing an initial guess, .NODESET may be used to ‘‘break the
tie’’ in, for instance, a flip-flop, and make it come up in a desired state.

[.NOISE Noise Analysis

General forms

NOISE V(<node> [,<node>)) <name> [internal value]

Examples

.NOISE V(5) VIN
.NOISE V(101) VSRC 20
.NOISE V(4,5) ISRC

The .NOISE statement causes a noise analysis of the circuit to be done. Noise
analysis is done in conjunction with AC analysis and requires there to be a .AC
staterment.

V(<node> [,<node>]) is an output voltage. It has a form such as V(5),
which is the voltage at an output node, or a form such as V(4,5), which is the
output voltage across two nodes. <<name>> is the name of an independent voltage
or current source at which the equivalent input noise will be calculated. <name>
is not itself a noise generator, but only a place at which to calculate the equivalent
input noise.

The noise-generating devices in a circuit are the resistors and the semiconduc-
tor devices. For each frequency of the AC analysis, each noise generator’s contribu-
tion is calculated and propagated to the output nodes. There, all the propagated
noise values are RMS-summed. The gain from the input source to the output
voltage is also computed and from it and the total output noise an equivalent
input noise is calculated. If:

<name> is a voltage source, then the input noise units are volt/hertz"/?

<name> is a current source, then the input noise units are amp/hertz!2

The output noise units are always volt/hertz!/.

If [interval value] is present, then it is the print interval. Every nth frequency,
where n is the print interval, a detailed table is printed showing the individual
contributions of all the circuit’s noise generators to the total noise. These values
are the noise amounts propagated to the output nodes, not the noise amounts at
each generator. If [interval value] is not present, then no detailed table is printed.

‘The detailed table is printed while the analysis is being done, and does
not need .PRINT or .PLOT statements. The output noise and equivalent input
noise may be output with .PRINT statement or .PLOT statements if desired.
Noise analysis is the only analysis for which you have a choice about using the
.PRINT or .PLOT statements.

162 Abridged Summary of PSpice Statements App. A

B .0Op Bias-Point Analysis

General forms
.OP

Examples

.0P

The .OP statement causes detailed information about the bias-point to be printed.
The bias-point is calculated whether or not there is a .OP statement. Without a
.OP statement the only information about the bias-point which is output is a list
of the node voltages.

With a .OP statement the currents and power dissipation of all the voltage
sources are printed. Also the small signal (linearized) parameters of all the nonlinear
controlled sources and all the semiconductor devices are output.

The .OP statement controls output for the regular bias-point only. The .TRAN
statement controls output for the transient analysis bias-point.

 .OPTIONS Options

General forms
.OPTIONS [option namel* | <option name> = <value>]*

Examples

.OPTIONS NOECHO NOMOD DEFL = 1l2u DEFW=48u DEFAD =150p DEFAS = 150p
.OPTIONS ACCT RELTOL = .01

The .OPTIONS statement is used to set all the options, limits, and control parame-
ters for the various analyses including the output width (see the .WIDTH statement,
which is stili supported).

The options are listed in any order. There are two kinds of options: those
with values and those without. The options without values are flags of various
kinds and simply listing the option name is sufficient.

The following table lists the flag options. The default for any flag option
is “‘off”” (i.e., the opposite of specifying the option).

Option Meaning

ACCT summary and accounting information is output at the end of all the
analyses (see Job Statistics Summary for further information on
ACCT)

LIST summary of circuit efements (devices) is output

NODE net list {node table) is output

App. A Abridged Summary of PSpice Statements

NOECHO
NOMOD

NOPAGE

OPTS
WIDTH

Option
ABSTOL
CHGTOL
CPTIME
DEFAD
DEFAS
DEFL
DEFW
GMIN
ITL1
ITL2
ITL4
ITLS

LIMPTS
NUMDGT

PIVREL
PIVTOL
RELTOL
TNOM

TRTOL
VNTOL

[~ .PLOT

+

Examples

.PLOT

suppresses listing of the input file

163

suppresses listing of model parameters and temperature updated

values

suppresses paging and printing of a banner for each major section

of output
values for all options are output
Same as “WIDTH OUT=" statement

Meaning

best accuracy of currents

Best accuracy of charges

CPU time allowed for this run

MOSFET default drain area (AD)

MOSFET default source area (AS)

MOSFET default length (L}

MOSFET default width (W}

minimum conductance used for any branch

DC and bias-point “blind” iteration limit

DC and bias-point “educated guess” iteration limit

iteration limit at any point in transient analysis

total iteration limit for all points in transient analysis
{ITL5 = 0 means ITL5 = infinity)

maximum points allowed for any print table or plot

number of digits output in print tables (maximum eight
useful digits)

relative magnitude required for pivot in matrix solution

absolute magnitude required for pivot in matrix solution

relative accuracy of V's and I's

defaulttemperature (also the temperature at which model
parameters are assumed to have been measured)

transient analysis accuracy adjustment

best accuracy of voltages

Plot

General forms

[DC] [AC] [NOISE] [TRAN] [output variable]*
([<lower limit value> , <upper limit value>1)*

The table below lists the options with values and their default values:

Units Default
amp 1pA
coulomb .01pC
sec 1E6
meter? 0
meter? 0
meter 100u
meter 100u
ohm™! 1E-12
40

20

10

5000

201

4

1E-3

1E-13

.001

°C 27
7.0

voit 1uVv

.PLOT DC V(3) V(2,3) V(R)) I(VIN) I(R2) IB(QL3) VBE(Q13)
.PLOT AC VM(2) VM(3,4) VG(5) VDB(5) IR(b) II(?)

164 Abridged Summary of PSpice Statements App. A

.PLOT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)
.PLOT TRAN V(3) V(2,3) (O0,5V) ID(M2) I(VCC) (-50mA,SOmA)

The .PLOT statement allows results from DC, AC, noise, and transient analyses
to be output in the form of *‘line printer’’ plots. These plots are made by using
characters to draw the plot, hence they will work with any kind of printer.

DC, AC, NOISE, and TRAN are the analysis types which can be output
with .PLOT statements. Exactly one analysis type must be specified.

See Chapters 4, 6, 8, and 9 for use of this statement. ’

[PRINT Print

General forms
.PRINT [DC] [AC] [NOISE] [TRAN] [outpur variable]*

Examples

.PRINT DC V(3) V(2,3) V(RL) I(VIN) I(R2) IB(Q13) VBE(Q13)
.PRINT AC VM(2) VP(2) VM(3,4) VG(S) VDB(S) IR(b) II(?)
.PRINT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE).

.PRINT TRAN V(3) V(2,3) ID(M2) I(VCC)

The .PRINT statement allows results from DC, AC, noise, and transient analyses
to be output in the form of tables, referred to as print tables.

DC, AC, NOISE, and TRAN are the analysis types which can be output
with .PRINT statements. Exactly one analysis type must be specified.

See Chapters 4, 6, 8, and 9 for use of this statement.

™ PROBE Probe

General forms

.PROBE
.PROBE [output variable]*

Examples

.PROBE
.PROBE V(3) V(&,3) V(RL) VM(2) VP(2) I(VIN) I(R2) IB(Q13)
+ VBE(Q13) VDB(5)

The .PROBE statement writes the results from DC, AC, and transient analyses
to a data file named PROBE.DAT for use by the Probe graphics post-processor.
See Chapters 4, 6, 8, and 9 for use of this statement.

App. A Abridged Summary of PSpice Statements 165

The first form (with no output variables) writes all the node voltages and
all the device currents to the data file. The second form writes only those output
variables specified to the data file. Note that unlike the .PRINT and .PLOT

statements there is no analysis name before the output variables.
kv

[.SENS Sensitivity Analysis

General forms
SENS <output variable>*

Examples
.SENS V(9) V(4,3) V(17) I(VCC)

The .SENS statement causes a DC sensitivity analysis to be performed. By lineariz-
ing the circuit about the bias-point, the sensitivities of each of the output variables
to all the device values and model parameters will be calculated and output.
This can easily generate huge amounts of output.

<output variable> has the same format and meaning as in the .PRINT
statement for DC and transient analyses. However, in the case of <output variable>
being a current, it is restricted to be the current through a voltage source.

™ .SUBCKT Subcircuit definition

General forms
.SUBCKT <name> [node]*

Examples

.SUBCKT OPAMP 1 2 101 102

The .SUBCKT statement begins the definition of a subcircuit. The definition is
ended with a .ENDS statement. All the statements between .SUBCKT and .ENDS
are included in the definition. Whenever the subcircuit is called, by an X statement,
all the statements in the definition replace the calling statement.

<name>> is the subcircuit’s name and is used by an X statement to reference
the subcircuit. It must start with a letter.

[node]” is an optional list of nodes. There must be the same number of
nodes in the subcircuit calling statements as in its definition. When the subcircuit
is called, the actual nodes (the ones in the calling statement) replace the argument
nodes (the ones in the defining statement). ’ ‘

Subcircuit calls may be nested. That is, an X statement may appear between
a .SUBCKT and a .ENDS.

166 Abridged Summary of PSpice Statements App. A

Subcircuit definitions may not be nested—a .SUBCKT statement may not
appear in the statements between a .SUBCKT and a .ENDS.

Subcircuit definitions should contain only device statements (statements with-
out a leading ‘“.”’) and possibly .MODEL statements. Models defined within a
subcircuit definition are available only within the subcircuit definition in which
they appear. Also, if a .MODEL statement appears in the main circuit, that
model is available in the main circuit and all subcircuits.

Node, device, and model names are local to the subcircuit in which they
are defined. That is, it is OK to use a name in a subcircuit which has already
been used in the main circuit. When the subcircuit is expanded all its names are
prefixed with the subcircuit instance name: for example, ‘‘Q13’° becomes
¢“X3.Q13.” After expansion all names are unique.

. TEMP Temperature

General forms
.TEMP <temperature value>*

Examples

.TEMP 125
.TEMP O 27 125

The .TEMP statement sets the temperature at which all analyses are done. The
temperatures are in degrees Centigrade. If more than one temperature is given,
then all analyses are done for each temperature. It is assumed that the model
parameters were measured or derived at the nominal temperature. The nominal
temperature is 27°C unless set otherwise by the TNOM option in the .OPTIONS
statement.

.TF Transfer Function

General forms
.TF <output variable> <input source name>

Examples

.TF V(5) VIN
.TF I(VDRIV) ICNTRL

The .TF statement causes the small-signal transfer function to be calculated by
linearizing the circuit around the bias-point. The gain from <input source name>
to <output variable> will be output along with the input and output resistances.

App. A Abridged Summary of PSpice Statements 167

The output is done as soon these quantities are calculated and does not require
.PRINT, .PLOT, or .PROBE statements.

<output variable>> has the same format and meaning as in the .PRINT
statement. However, in the case of <output variable> being a current, it is
restricted to be the current through a voltage source.

. TRAN Transient Analysis

General forms

.TRAN[/OP] <print step value> <final time value>
+ [<no-print value> [step ceiling valuel] [UIC]

Examples

.TRAN inS 100nS
.TRAN/OP 1nS 100nS 20nS UIC
.TRAN inS 100nS Ons .1nS

The .TRAN statement causes a transient analysis to be performed on the circuit.
The transient analysis calculates the circuit’s behavior over time, starting at
TIME = 0 and going to <final time value>.

The transient analysis uses an internal time step which is adjusted as the
analysis proceeds. Over intervals where there is little activity, the internal time
step is increased and during busy intervals it is decreased. <print step value>
is the time interval used for printing or plotting the results of the transient analysis.
Since the results are computed at different times than they are printed, a second-
order polynomial interpolation is used to obtain the printed values. The transient
analysis always starts at TIME = 0. However, it is possible to suppress output
of a portion of the analysis. [ro-print value] is the amount of time from Time = 0
which is not printed, plotted, or given to Probe.

Sometimes one is concerned about the size of the internal time-step. The
default ceiling on the internal time-step is <final time value>/50 (it is not <print
step value>). [step ceiling value] allows a ceiling smaller or larger than the
print interval to be put on the internal time-step.

Prior to doing the transient analysis, PSpice computes a bias-point for the
circuit separate from the regular bias-point. This is done because the independent
sources can have different values at the start of a transient analysis than their
DC value. Normally only the node voltages are printed for the transient analysis
bias-point. However, the ‘//OP”’ suffix (on .TRAN) will cause the same detailed
printing of the bias-point that the .OP statement causes for the regular bias-
point.

If the keyword UIC (Use Initial Conditions) is put at the end of the .TRAN
statement, the calculation of the bias-point is skipped. This option is used with
the IC = specification for capacitors and inductors.

168 Abridged Summary of PSpice Statements App. A

[.WIDTH Width

General forms
.WIDTH OUT = <value>

Examples

-WIDTH OUT = 40
-.WIDTH 0OUT =132

The WIDTH statement sets the width of the output. <values™> is in columns'
and must be either 80 (the default) or 132.

APPENDIX B

Abridged Summary

of PSpice Devices

This section summarizes the devices available in PSpice as of late 1987. Each
device is simply described by its use in the circuit file, and a list of model parameters
which may be used, in the .MODEL statement, to characterize the device. The
equations for device currents, capacitances, temperature corrections, and noise cur-
rents are in the PSpice User’s Guide (available from MicroSim Corporation).

B GaAsSFET
General forms

B<name> <drain node> <gate node> <source node>
+ <model name> [area value]

Examples

BIN 100 1 0O GFAST
B13 22 14 23 GNOM 2.0

Model Parameters (see .MODEL statement) Default value Units
LEVEL model type (1 = Curtice, 2 = Raytheon) 1

VTO threshold voltage —2.5 volt
ALPHA tanh constant 2 volt™!

169

170 Abridged Summary of PSpice Devices App. B
Default
Model Parameters (see .MODEL statement) value Units

B doping tail extending parameter (level 2 only) 3
BETA transconductance coefficient 1 amp/volt?
LAMBDA channel-length modulation 0 volt™!
RG gate ohmic resistance 0 ohm
RD drain ohmic resistance 0 ohm
RS source ohmic resistance 0 ohm
IS gate p-n saturation current 1E-14 amp
M gate p-n grading coefficient 5
N gate p-n emission coefficient 1
VBI gate p-n potential 1 volt
CcGD gate-drain zero-bias p-n capacitance 0 farad
CGS gate-source zero-bias p-n capacitance 0 farad
CDS drain-source capacitance 0 farad
TAU transit time 0 sec
FC forward-bias depletion capacitance coefficient 5
VTOTC VTO temperature coefficient 0 volt/°C
BETATCE BETA exponential temperature coefficient 0 %/°C
KF flicker noise coefficient 0
AF flicker noise exponent 1
The GaAsFET is modeled as an intrinsic FET with an ohmic resistance (RD/
area) in series with the drain, and with another ohmic resistance (RS/area) in
series with the source, and with another ohmic resistance (RG) in series with
the gate. [area value] is the relative device area and defaults to 1.
C Capacitor

General forms

C<name> <+ node> <— node> [model name| <value>

+

Examples

[IC = <initial value>]

CLOAD 15 0 <20pF

ce

1 2 .2E-12 IC=1.5V

CFDBCK 3 33 CMOD 10pF

Model Parameter (see .MODEL statement) Default value Units
c capacitance multiplier 1
vC1 linear voltage coefficient 0 volt™?

App. B Abridged Summary of PSpice Devices 7m
Model Parameter (see .MODEL statement) Default value Units
VC2 quadratic voltage coefficient 0 volt=2
TC1 linear temperature coefficient 0 °c1
TC2 quadratic temperature coefficient 0 °c2

capacitor to the (—) node.

during the bias-point calculation.

D Diode

General forms

Examples

DCLAMP 14 0O DMOD
D13 15 1? SWITCH 1.5

Noise: The capacitor does not have a noise model.

D<name> <+ node> <— node> <model name> [area value]

The (+) and (—) nodes define the polarity means when the capacitor has a
positive voltage across it. Positive current flows from the (+) node through the

If [model name] is left out then <value> is the capacitance in farads. If
[model name] is specified, then the capacitance is given by the formula

<value>-C-(1 + VC1-V + VC2-V?)-(1 + TC1-(T — Tnom) + TC2 -(T — Tnom)?)

<value> is normally positive (though it can be negative, but not zero).
*““Tnom’’ is the nominal temperature (set with TNOM option).
<initial value> is the initial guess for the voltage across the capacnor

Model parameter (see .MODEL statement) Default value Units
IS saturation current 1E-14 amp
N emission coefficient 1

RS parasitic resistance 0 ohm
cJo zero-bias p-n capacitance 0 farad
V) p-n potential 1 volt
M p-n grading coefficient 5

FC forward-bias depletion capacitance coefficient 5

TT transit time 0 sec
BV reverse breakdown voltage infinite volt
1BV reverse breakdown current 1E-10 amp

172 Abridged Summary of PSpice Devices App. B

Model parameter (see .MODEL statement) Default value Units
EG bandgap voltage (barrier height)} 1.1 eV
XTI IS temperature exponent 3
KF flicker noise coefficient 0
AF flicker noise exponent 1

The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic
diode. <+ node> is the anode and <<—node> is the cathode. Positive current
is current flowing from the anode through the diode to the cathode. [area value]
scales IS, RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified
as positive values.

E Voltage-Controlled Voltage Source
General forms

E<name> <+ node> <— node>

+ <+ controlling node> <<— controlling node> <gain>
E<name> <+ node> <— node> POLY (<value>)
+ < <+ controlling node> <— controlling node> >x*
+ < <polynomial coefficient value> >x
Examples
EBUFF 1 c 10 11 1.0
ERMP 13 0 POLY(1l) 2& 0O SO0

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005

The first form and the first two examples apply to the linear case. The second
form and the last example are for the nonlinear case. POLY(<\value>) specifies
the number of dimensions of the polynomial. The number of pairs of controlling
nodes must be equal to the number of dimensions.

The (+) and (—) nodes are the output nodes. Positive current flows from
the (+) node through the source to the (—) node. The (+ controlling) and (—
controlling) nodes are in pairs and define a set of controlling voltages. A particular
node may appear more than once, and the output and controlling nodes need
not be different.

For the linear case, there are two controlling nodes and these are followed
by the gain. For the nonlinear case see Chapter 4 for describing the controlling
polynomial.

App. B Abridged Summary of PSpice Devices 173

F Current-Controlled Current Source
General forms

F<name> <+ node> <— node>

+ <controlling V device name> <gain>

F<name> <+ node> <—node> POLY(<value>)

+ <controlling V device name>*

+ < <polynomial coefficient value> >
Examples

FSENSE 1 2 VSENSE 10.0
FAMP 313 DPOLY({1l) VIN 500
FNONLIN 100 101 POLY(2) VCNTRLL VCINTRLZ 0.0 13.6 0.2 0.005

The first form and the first two examples apply to the linear case. The second
form and the last example are for the nonlinear case. POLY(<value>) specifies
the number of dimensions of the polynomial. The number of controlling voltage
sources must be equal to the number of dimensions.

The (+) and (—) nodes are the output nodes. A positive current will flow
from the (+) node through the source to the (—) node. The current through the
controlling voltage source determines the output current. The controlling source
must be an independent voltage source (V device), although it need not have a
zero DC value.

For the linear case, there must be one controlling voltage source and its
name is followed by the gain. For the nonlinear case see Chapter 4 for describing
the controlling polynomial.

Ke Voltage-Controlled Current Source
General forms

G<name> <+ node> <— node>

+ <+ controlling node> <—controlling node>

+ <transconductance>

G<name> <+ node> <— node> POLY(<value>)

+ < <+ controlling node> <— controlling node >

+ < <polynomial coefficient value> >#

174 Abridged Summary of PSpice Devices App. B

Examples
GBUFF 1 ¢ 10 11 1.0
GAMP 13 0OPOLY(1) 26 O 500

GNONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005

The first form and the first two examples apply to the linear case. The second
form and the last example are for the nonlinear case. POLY (<value>) specifies
the number of dimensions of the polynomial. The number of pairs of controlling
nodes must be equal to the number of dimensions.

The (+) and (—) nodes are the output nodes. A positive current flows
from the (+) node through the source to the (—) node. The (+ controlling) and
(- controlling) nodes are in pairs and define a set of voltages. A particular
node may appear more than once, and the output and controlling nodes need
not be different.

For the linear case, there are two controlling nodes and these are followed
by the transconductance. For the nonlinear case see Chapter 4 for describing the
controlling polynomial.

T H Current-Controlled Voltage Source
General forms

H<name> <+ node> <—node>

+ <controlling V device name> <transresistance>
H<name> <+node> <—node> POLY(<value>)
+ <controlling V device name>x*
+ < <polynomial coefficient value> >*
Examples

HSENSE 1 2 VSENSE 10.0
HAMP 13 OPOLY(1) VIN 500
HNONLIN 100 101 POLY(2) VCNTRL1 VCINTRLZ2 0.0 13.5 0.2 0.005

The first form and the first two examples apply to the linear case. The second
form and the last example are for the nonlinear case. POLY(<value>) specifies
the number of dimensions of the polynomial. The number of controlling voltage
sources must be equal to the number of dimensions.

The (+) and (=) nodes are the output nodes. Positive current flows from
the (+) node through the source to the (—) node. The current through the controlling
voltage source determines the output voltage. The controlling source must be an
independent voltage source (V device), though it need not have a zero DC value.

App. B Abridged Summary of PSpice Devices 175

For the linear case, there must be one controlling voltage source and its
name is followed by the transresistance. For the nonlinear case see Chapter 4
for describing the controlling polynomial.

1 Independent Current Source
General forms

I<name> <+ node> <—node>

+ [[DC] <value>]
+ [AC <magnitude value> |phase value])
+ [transient specification]

Examples

IBIAS 13 02.3mA

IAC ¢ 3AC .00%

IACPHS 2 3 AC .001 90

IPULSE 1 OPULSE(-lmA 1lmA 2nS 2nS 2nS 50nS 100nS)
I3 et ??DC .002 AC 1 SIN(.D02 .00R2 1.S5MEG)

This element is a current source. Positive current flows from the (+) node through
the source to the (—) node. The default value is zero for the DC, AC, and
transient values. None, any, or all of DC, AC, and transient values may be
specified. The AC phase value is in degrees.

If present, [transient specification] must be one of:

EXP <parameters>
PULSE <parameters>
PWL <parameters>
SFFM <parameters>
SIN <parameters>

These are individually described in Chapter 9.

J Junction FET

General forms

J<name> <drain node> <gate node> <source node>
+ <model name> [area value]

176 Abridged Summary of PSpice Devices App. B

Examples

JIN 100 1 OJFAST
J13 22 14 23 JNOM 2.0

Model Parameters (see .MODEL statement) Default value Units
vTO threshold voltage -2.0 volt
BETA transconductance coefficient 1E-4 amp/volt?
LAMBDA channel-length modulation 0 voit™
RD drain ohmic resistance 0 ohm
RS source ohmic resistance 0 ohm
IS gate p-n saturation current 1E-14 amp
PB gate p-n potential 1 volt
CGD gate-drain zero-bias p-n capacitance 0 farad
CGS gate-source zero-bias p-n capacitance 0 farad
FC forward-bias depletion capacitance coefficient 5

VTOTC VTO temperature coefficient 0 volt/°C
BETATCE BETA exponential temperature coefficient 0 %/°C
KF flicker noise coefficient 0

AF flicker noise exponent 1

The JFET is modeled as an intrinsic FET with an ohmic resistance (RD/area) in
series with the drain, and with another ohmic resistance (RS/area) in series with
the source, and with another ohmic resistance (RG) in series with the gate. Positive
current is current flowing into a terminal. [area value] is the relative device
area and defaults to 1.

[K Inductor Coupling (transformer core)
General forms

K<name> L<inductor name> <L<inductor name> >*

+ <coupling value>>
K<name> <L<inductor name> >* <coupling value>
+ <model name> [size value]

Examples

KTUNED L30UT L4IN .8
KTRNSFRM LPRIMARY LSECNDRY .49
KXFRM L1 L2 L3 L4 .98 KPOT_3CA

App. B Abridged Summary of PSpice Devices 177

Model Parameters (nonlinear magnetics only) Default value Units
AREA mean magnetic cross-section A cm?
PATH mean magnetic path length 1 cm
GAP effective air-gap length 0 cm
PACK pack (stacking) factor 1

MS magnetization saturation 1E+6 amp/meter
ALPHA mean field parameter .001

A shape parameter 1000 amp/meter
Cc domain wall flexing constant 2

K domain wall pinning constant 500

K<name> couples two or more inductors. Using the ‘‘dot’” convention, place
a “‘dot’” on the first node of each inductor. In other words, given:

IL 1 0 AC 1ImA
Ll 1 0 10uH

L2 2 0 10uH

R 2 0 .1

KiZ L1 L2 .99499

the current through L2 will be in the opposite direction as the current through
L1. The polarity is determined by the order of the nodes in the L device(s) and
not by the order of inductors in the K statement.

<coupling value> is the ““coefficient of mutual coupling”” which must be
between O and 1. Note that iron-core transformers have a very high coefficient
of coupling, greater than .999 in many cases.

If <model name> is present, four things change:

The mutual coupling inductor becomes a nonlinear, magnetic core device.

The magnetic core’s B-H characteristics are analyzed using the Jiles-Atherton
model.

The inductors become ‘‘windings,” so the number specifying inductance
now specifies the ‘‘number of turns.”’

The list of coupled inductors may be just one inductor.

A model statement is required to specify the model parameters.

[size value] defaults to 1 and scales the magnetic cross-section. It is intended to
represent the number of lamination layers, so only one model statement is needed
to each lamination type.

PSpice uses the Jiles-Atherton model to analyze the B-H curve of the magnetic
core, and calculate values for inductance and flux for each of the ‘‘windings.”’

178 Abridged Summary of PSpice Devices App. B

L Inductor

General forms

L<name> <+node> <—node> [model name] <value>
+ [IC = <nitial value>)

Examples

LLOAD 15 O <OmH

Le 1 2 .2E-b
LCHOKE 3 42 LMOD .03
LSENSE 5 L2 cUH IC=c<cmhA

Model Parameters (see .MODEL statement) Default value Units
L inductance multiplier 1

L1 linear current coefficient 0 amp!
IL2 quadratic current coefficient 0 amp 2
TC1 linear temperature coefficient 0 °c!
TC2 quadratic temperature coefficient 0 °c~2

The (+) and (—) nodes define the polarity meant when the inductor has a positive
voltage across it. Also, positive current flows from the (+) node through the
inductor to the (—) node.

If [model name] is left out, then <value> is the inductance in henries.

If [model name] is specified, then the inductance is given by the formula

<value>-L-(1 + IL1-1 + IL2-1%)-(1 + TC1-(T — Tnom) + TC2+(T — Tnom)?)

<value> is normally positive (though it can be negative, but not zero). ‘“Tnom’
‘is the nominal temperature (set with TNOM option).

<initial value> is the initial guess for the current through the inductor during
the bias-point calculation.

M MOSFET
General forms

M<name> <drain node> <gate node> <source node>
+ <bulk/substrate node> <model name>

[L = <value>] {W = <value>]

[AD = <value>] [AS = <value>]

[PD = <value>] [PS = <value>]

+ + +

App. B Abridged Summary of PSpice Devices 179
+ [NRD = <value>] [NRS = <value>]
+ [INRG = <value>] [NRB = <value>]
Examples
M1 24 2 13 0 PNOM L=25u W=1cu
M131S 3 1] 0 PSTRONG
M2AR 0 2 100 100 NWEAK L=33u W=12u
+ AD =c08p AS =2688p PD=L0Ou PS=60u NRD=14 NRS=24 NRG=10
Model Parameters (see .MODEL statement) Default value Units
LEVEL model type (1, 2, or 3) 1
L channel length DEFL meter
w channel width DEFW meter
LD lateral diffusion {length) 0 meter
wD lateral diffusion {width) 0 meter
VTO zero-bias threshold voltage 0 volt
KP transconductance 2E-5 amp/volt?
GAMMA bulk threshold parameter 0 volt"2
PHI surface potential .6 volt
LAMBDA channel-length modulation (LEVEL = 1 or 2) 0 volt~1
RD drain ohmic resistance 0 ohm
RS source ohmic resistance 0 ohm
RG gate ohmic resistance 0 ohm
RB bulk ohmic resistance 0 ohm
RDS drain-source shunt resistance infinite ohm
RSH drain, source diffusion sheet resistance 0 ohm/square
IS bulk p-n saturation current 1E- 14 amp
JS bulk p-n saturation current/area 0 amp/meter?
PB bulk p-n potential .8 volt
CBD bulk-drain zero-bias p-n capacitance 0 farad
CBS bulk-source zero-bias p-n capacitance 0 farad
cJ bulk p-n zero-bias bottom capacitance/area 0 farad/meter?
cJsw bulk p-n zero-bias perimeter capacitance/length 0 farad/meter
MJ bulk p-n bottom grading coefficient 5
MJsSw bulk p-n sidewall grading coefficient .33
FC bulk p-n forward-bias capacitance coefficient .5
CGSO gate-source overlap capacitance/channel width 0 farad/meter
CGDO gate-drain overlap capacitance/channel width 0 farad/meter
CGBO gate-bulk overlap capacitance/channel length 0 farad/meter
NSUB substrate doping density 0 1/em3
NSS surface state density 0 1/cm?
NFS fast surface state density 0 1/em?
TOX oxide thickness infinite meter
TPG gate material type: +1
+1 = opposite of substrate
~1 = same as substrate
0 = aluminum
xJ metallurgical junction depth 0 meter

180 Abridged Summary of PSpice Devices App. B

Model Parameters (see .MODEL statement) Default value Units
uo surface mobility 600 cm?/volt-sec
UCRIT mobility degradation critical field (LEVEL = 2} 1E4 voit’em
UEXP mobility degradation exponent (LEVEL = 2) 0
UTRA {not used) mobility degradation transverse

field coefficient
VMAX maximum drift velocity 0 meter/sec
NEFF channel charge coefficient (LEVEL = 2} 1
xac fraction of channel charge attributed to drain 1
DELTA width effect on threshold 0
THETA mobility modulation (LEVEL = 3) 0- volt™!
ETA static feedback (LEVEL = 3) 0
KAPPA saturation field factor (LEVEL = 3) 2
KF flicker noise coefficient 0
AF flicker noise exponent 1

The MOSFET is modeled as an intrinsic MOSFET with ohmic resistances in
series with the drain, source, gate, and bulk (substrate). There is also a shunt
resistance (RDS) in parallel with the drain-source channel. Positive current is
current flowing into a terminal (for example, positive drain current flows from
the drain through the channel to the source).

L and W are the channel length and width. L is decreased by twice LD to
get the effective channel length. W is decreased by twice WD to get the effective
channel width. L and W can be specified on the device, the model, or on the
.OPTION statement. The value on the device supersedes the value on the model
which supersedes the value on the .OPTION statement.

AD and AS are the drain and source diffusion areas. PD and PS are the
drain and source diffusion perimeters. The drain-bulk and source-bulk saturation
currents can be specified either by JS, which is multiplied by AD and AS, or
by IS, which is an absolute value. The zero-bias depletion capacitances can be
specified by CJ, which is multiplied by AD and AS, and by CISW, which is
multiplied by PD and PS. Or they can be set by CBD and CBS, which are
absolute values.

NRD, NRS, NRG, and NRB are the relative resistivities of the drain, source,
gate, and substrate in squares. These parasitic (ohmic) resistances can be specified
either by RSH, which is multiplied by NRD, NRS, NRG, and NRB respectively,
or by RD, RS, RG, and RB, which are absolute values.

PD and PS default to 0. NRD and NRS default to 1. NRG and NRB
default to 0. Defaults for L, W, AD, and AS may be set in the .OPTIONS
statement. If AD or AS defaults are not set, they also default to 0. If L or W
defaults are not set, they default to 100u.

App. B Abridged Summary of PSpice Devices 181

Q Bipolar Transistor
General forms

Q<<name> <collector node> <base node> <emitter node>

+ [substrate nodel <model name> [area value]
Examples

Q1 14 2 13 PNPNOM

QL3 35 3 0 1 NPNSTRONG 1.5
Model] Parameters (sce .MODEL statement) Default value Units
IS p-n saturation current 1E - 16 amp
BF ideal maximum forward beta 100
NF forward current emission coefficient 1
VAF (VA) forward Early voitage infinite volt
IKF {IK) corner for forward beta high-current roll-off infinite amp
ISE (C2) base-emitter leakage saturation current 0 amp
NE base-emitter leakage emission coefficient 1.5
BR ideal maximum reverse beta 1
NR reverse current emission coefficient 1
VAR (VB) reverse Early voltage infinite volt
IKR corner for reverse beta high-current roll-off infinite amp
ISC (C4) base-collector leakage saturation current 0 amp
NC base-collector leakage emission coefficient 2.0
RB . zero-bias {maximum) base resistance 0 ohm
RBM minimum base resistance RB ohm
IRB current at which Rb falls halfway to RBM infinite amp
RE »/f emitter ohmic resistance 0 ohm
RC collector ochmic resistance 0 ohm
CJE base-emitter zero-bias p-n capacitance 0 farad
VJE (PE) base-emitter built-in potential .75 volt
MJE (ME) base-emitter p-n grading factor .33
cJC base-collector zero-bias p-n capacitance 0 farad
VJC (PC) base-coliector built-in potential .75 voit
MJC (MC) base-collector p-n grading factor .33
XcJC fraction of Cbec connected internal to Rb 1
CJS (CCS) collector-substrate zero-bias p-n capacitance 0 farad
VJS (PS) collector-substrate built-in potential .75 volt
MJS (MS) collector-substrate p-n grading factor 0
FC forward-bias depletion capacitor coefficient 5
TF ideal forward transit time 0 sec
XTF transit time bias dependence coefficient 0
VTF transit time dependency on Vbc infinite volt
ITF transit time dependency on Ic 0 amp
PTF excess phase @ 1/(2 w -TF)Hz 0 degree

182 Abridged Summary of PSpice Devices App. B

Model Parameters (see .MODEL statement) Default value Units
TR ideal reverse transit time 0 sec
EG bandgap voltage (barrier height) 1.11 eV
XTB forward and reverse beta temperature coefficient 0
XTI {PT) IS temperature effect exponent 3
KF flicker noise coefficient 0
AF flicker noise exponent 1

The bipolar transistor is modeled as an intrinsic transistor with ohmic resistances
in series with the collector (RC/area), the base (value varies with current) and
with the emitter (RE/area). The substrate node is optional, and if not specified
it defaults to ground. Positive current is current flowing into a terminal. [area
value] is the relative device area and defaults to 1. For those model parameters
which have alternate names, such as VAF and VA (the alternate name is indicated
with parentheses), either name may be used.

The parameters ISE (C2) and ISC (C4) may be set to be greater than 1. In
this case, they are interpreted as multipliers of IS instead of absolute currents;
that is, if ISE > 1, then it is replaced by ISE-IS. The same applies for ISC.

R Resistor

General forms
R<name> <+node> <— node> [model name] <value>

Examples

RLOAD 1S 0O 2K

RC L 2 2.4E4
Model Parameters (see .MODEL statement) Default value Units
R resistance multiplier 1
TC1 linear temperature coefficient 0 °c—1
TC2 guadratic temperature coefficient 0 °c2
TCE exponential temperature coefficient 0 %/°C

The (+) and (—) nodes define the polarity meant when the resistor has a positive
voltage across it. Positive current flows from the (+) node through the resistor
to the (—) node.

If [model name] is included and TCE (in the model) is not specified, then
the resistance is given by the formula

<value>-R-(1 + TC1+(T — Tnom) + TC2-(T — Tnom)?)

App. B Abridged Summary of PSpice Devices 183
If [model name] is included and TCE (in the model) is specified, then the resistance
is given by the formula

<value> R+ 1.0]TCE(T=Tnom)

<value> is normally positive (though it can be negative, but not zero). *“Tnom”’
is the nominal temperature (set with TNOM option).

Noise: Noise is calculated assuming a 1 hertz bandwidth. The resistor gener-
ates thermal noise with the following spectral power density (per unit bandwidth):

i2 = 4-k - T/resistance

S Voltage-Controlled Switch

General forms

S<name> <+ switch node> <—switch node>

+ <+ controlling node> <<—controlling node>
+ <model name>
Examples

Sic 13 17?7 2 0 SMOD
SRESET 5 0 15 3 RELAY

Model Parameters (see .MODEL statement) Default value Units
RON “on” resistance 1 Ohm
ROFF “off” resistance 1E+6 Ohm
VON control voltage for “on” state 1 Volt
VOFF control voltage for "off"’ state 0 Volt

The voltage-controlled switch is a special kind of voltage-controlled resistor. The
resistance between <+ switch node> and <— switch node> depends on
the voltage between <+ controlling node> and <— controlling node>. The
resistance varies continuously between RON and ROFF.

RON and ROFF must be greater than zero and less than 1/GMIN.

A resistance of 1/GMIN is connected between the controlling nodes to
keep them from floating. See the .OPTION card to change GMIN.

We have chosen this model for a switch to try to minimize numerical prob-
lems. However, there are a few things to keep in mind:

184 Abridged Summary of PSpice Devices App. B

» With double precision numbers PSpice can handle only a dynamic range
of about 12 decades. So, we do not recommend making the ratio of ROFF
to RON greater than 1E + 12.

+ Similarly, we do not recommend making the transition region too narrow.
Remember that in the transition region the switch has gain. The narrower
the region, the higher the gain and the greater the potential for numerical
problems.

* Although very little computer time is required to evaluate switches, during
transient analysis PSpice must step through the transition region with a
fine enough step size to get an accurate waveform. So, for many transitions
you may have long run times from evaluating the other devices in the
circuit many times.

T Transmission Line

General forms

T<name> <+ A port node> <— A port node>

+ <+ B port node> <— B port node>
+ 70 = <value> [TD = <value>] [F = <value> [NL = <value>]]
Examples

Tl 1 2 3 4 20=220 TD =115nS
T2 1 2 3 4 20=220 F=2.25MEGHzZ
T3 1 @ 3 4 Z0=220 F=4.SMEGHz NL=0.5

The transmission line device is a bidirectional, ideal delay line. It has two ports,
A and B. The (+) and (—) nodes define the polarity of a positive voltage at a
port.

Z0 is the characteristic impedance. The transmission line’s length can be
specified either by TD, a delay in seconds, or by F and NL, a frequency and a
relative wavelength at F. NL defaults to 0.25 (F is then the quarter-wave frequency).
Although TD and F are both shown as optional, one of the two must be specified.
Examples T1, T2, and T3 all specify the same transmission line.

Y Independent Voltage Source

General forms

V<name> <+ node> <— node>
+ [[DC] <value>]

App. B Abridged Summary of PSpice Devices

+ [AC <magnitude value> [phase value]|
+ [transient specification)

Examples

VBIAS 13 0 2.3mVv

VAC ¢ 3 AC .001

VACPHS 2 3 AC .001 40

VPULSE 1 0O PULSE(-1mV 1mV 2nS 2nS 2nS 50nS 100nS)
V3 ¢b 77 DC .002 AC 1 SIN(.D002 .00¢ 1.5MEG)

specified. The AC phase value is in degrees.
If present, [transient specification] must be one of:

EXP <parameters>
PULSE <parameters>
PWL <parameters>
SFFM <parameters>
SIN <parameters>

These are individually described in Chapter 9.

r w Current-Controlled Switch

General forms

W<name> <+ switch node> <— switch node>
+ <controlling V device name> <model name>

Examples

Wilcé 13 L7 VC WMOD
WRESET 5 0O VRESET RELAY

185

This element is a voltage source. Positive current flows from the (+) node through
the source to the (—) node. The default value is zero for the DC, AC, and
transient values. None, any, or all of DC, AC, and transient values may be

Model Parameters (see .MODEL statement) Default value Units
RON “on” resistance 1 ohm
ROFF "off"" resistance 1E+6 ohm
ION control current for “on’’ state .001 amp
IOFF control current for “off” state 0 amp

186 Abridged Summary of PSpice Devices App. B

The current-controlled switch is a special kind of voltage-controlled resistor. The
resistance between <+ switch node> and <— swifch node> depends on
the current through <controlling V device name>. The resistance varies continu-
ously between RON and ROFF.

RON and ROFF must be greater than zero and less than 1/GMIN.

A resistance of 1/GMIN is connected between the controlling nodes to
keep them from floating. See the .OPTION card to change GMIN.

We have chosen this model for a switch to try to minimize numerical prob-
lems. However, there are a few things to keep in mind:

» With double precision numbers PSpice can handle only a dynamic range
of about 12 decades. So, we do not recommend making the ratio of ROFF
to RON greater than 1E + 12.

* Similarly, we do not recommend making the transition region too narrow.
Remember that in the transition region the switch has gain. The narrower
the region, the higher the gain and the greater the potential for numerical
problems.

* Although very little computer time is required to evaluate switches, during
transient analysis PSpice must step through the transition region with a
fine enough step size to get an accurate waveform. So, for many transitions
you may have long run times from evaluating the other devices in the
circuit many times.

B X Subcircuit Call

General forms
X<name> [node]” <subcircuit name>

Examples

X2 100 101 200 201 DIFFAMP
XBUFF 13 15 UNITAMP

<subcircuit name> is the name of the subcircuit’s definition (see .SUBCKT
statement). There must be the same number of nodes in the call as in the subcircuit’s
definition. This statement causes the referenced subcircuit to be inserted into the
circuit with the given nodes replacing the argument nodes in the definition. It
allows you to define a block of circuitry once and then use that block in several
places. .

Subcircuit calls may be nested. That is, you may have a call to subcircuit
A, whose definition contains a call to subcircuit B. The nesting may be to any
level, but must not be circular. For example, if subcircuit A’s definition contains
a call to subcircuit B, then subcircuit B’s definition must not contain a call to
subcircuit A.

APPENDIX C

How PSpice Works

The details of the concepts and algorithms of circuit simulation, especially as they
relate to SPICE and PSpice, are contained in the thesis:

NAGEL, LAURENCE. SPICE2 : A Computer Program to Simulate Semiconductor Circuits, Memo-
randum No. M520 (May 1975).

This is available by sending a check for $30, payable to The Regents of the University
of California, to this address:

Cindy Manly

EECS/ERL Industrial Liaison Program
497 Cory Hall

University of California

Berkeley, California 94720

This thesis reviews and develops many of the methods that could be used for numeri-
cally simulating electronic circuits, and covers the advantages (and pitfalls) of these
in great detail.

A much shorter review of how SPICE and PSpice works, using the algorithms
from the aforementioned thesis, is
BLume, WoLFraM. Computer Circuit Simulation, BYTE, vol 11 no. 7 (July 1986), page

165.

You should read this article as your introduction to the ‘‘innards’’ of SPICE. This
will probably satisfy most users as to the details of the algorithms in the program.
If not, then read the thesis by Laurence Nagel. Also interesting is a recently published
book reviewing these algorithms and their use in a variety of simulators:

187

188 How PSpice Works App. C

WiLLIAM J. McCALLA, ¢ ‘Fundamentals of Computer-Aided Circuit Simulation,”” Kluwer Aca-
demic, 1988.

Note: in the process of publication of the article by Wolfram Blume, an error occurred

in Figure 2 of that article. The conductance matrix (as printed) connects R2 between

nodes 1 and 0, instead of nodes 2 and 0. The matrix should have been written:

1/R2 0 -1/R2
0 1/R1 —1/R1
—1/R2 —1/R1 1/R1 + 1/R2

Choosing VO (node 0) as ground, and setting it to O volts, gives three equations:
—I=-V2/R2
+I= VI/R1 — V2/R1
0= —VI/Rl + V2-(1/R1 + 1/R2)
These equations reduce to:
I=VI/RI+R2)
V2 = V1-R2/(R1 + R2)

and are the results you would expect by examination of the circuit.

APPENDIX D

Voltage-Controlled Components

One of the most commonly requested component additions to PSpice is a voltage
controlled-resistor or voltage-controlled capacitor. Actually, a small subcircuit defini-
tion will provide these functions, as well as a voltage-controlled inductor. These
subcircuits should also work with U. C. Berkeley SPICE and other commercial
offerings.

The ““YX’’ subcircuit creates a floating, voltage-controlled admittance (remem-
ber, admittance is inverse of impedance). It does this by mirroring the voltage at
the terminals of the pseudo-component, multiplied by the control voltage to the
reference component, which is either a capacitor or a conductance (1/resistance).
As aresult, the current that flows through the reference component will be proportional
to the pseudo-component voltage, as well as to the control voltage. The resulting
current is then mirrored to the output terminals.

> Vin 5 Yx 4 Cout = Vin » Cret

3

T Cref

Schematic of *‘YX’’ circuit.

189

190 Voltage-Controlled Components App. D

*Copyright 1987, MicroSim Corporation

*

*Variable admittance: Yout = Yin * V

* control input: voltage

* | capacitor/conductance (connect other lead to ground)
) /N | output: floating admittance (pseudo-component)

* + - | 7\

.subckt yx 1 2 3 4 §
ecopy 3 b poly(e2) (1,2) (4,5) DO DO L
fout 4 5 vsense 1
rin 1 2 1G
vsense O b O
.ends

The ““ZX” subcircuit uses similar techniques to create a floating, voltage-controlled
impedance. In this case the current flowing through the pseudo-component is mirrored
directly to the reference component, which is either an inductor or a resistor. The
resulting voltage is then mirrored to the output terminals, multiplied by the controlling
voltage. As a result, the voltage at the output terminals is proportional to the voltage
across the reference component, as well as the control voltage.

1 5
+ e
j Vin Zx Lout = Vin® Lret
2| {4
3
Lref
or
1 5
+ prm————
j Vin Zx Rout = Vin * Rret
2 4
3
IRref

Schematic of ““ZX’’ circuit.

App. D Voltage-Controlled Components 191

“Copyright 1987, MicroSim Corporation

*Variable impedance: Zout = 2in "V
* control input: voltage

* | inductor/resistor (connect other lead to ground)
* / \ | output: floating impedance (pseudo-component)
* + - | 7\

.subckt zx 1 2 3 4 5
eout 4 & poly(é) (3,2) (3,0) 0 000 &
fcopy 0O 3 vsense 1
rin 1 2 16
vsensebt 5 0
.ends

Index

A

ABSTOL, 98, 99
AC analysis. See Frequency response analy-
sis
Accuracy of transient analysis, 98-99
.AC statement, 44, 77, 154
Active devices, 124-52
bipolar junction transistor (BJT), 137—
43
gallium-arsenide MESFET (GaAsFET),
134-36, 169-70
junction field effect transistor (JFET),
131-34, 145, 175-76
models, 124-25
MOS field effect transistor (MOSFET),
134, 143-48, 178-80
nonlinear magnetics, 148-51
semiconductor diode, 12631, 139,
140
AllSpice, xvii
Amplitude modulation, 101-2
Anhysteric magnetization, 148—49

B

B-H curves, 148-51

Bias-point, DC, 4, 6, 19, 42

Bias-point analysis, 162

Bipolar junction transistor (BJT), 13743
Blume, Wolfram, 187, 188

Bode, H.W., 68

Bode plots, 45-48, 68-72, 74
Breakdown, reverse, 127-28

C

Capacitance
diffusion, 129
diode, 128-29
of network versus voltage, measuring,
100
Raytheon and Curtice models, 134-36
reverse-bias, 131
reverse-voltage, 128-29

193

194

Capacitors, 7, 170-71
C device, 170-71
in DC circuits, 11-12
linear, 100
model for, 120
scaling component values, 120-21
CHGTOL, 98
Closed-loop response
in inverse polar form, 74
in polar form, 72
Coefficient
of mutual coupling, 177
offset, 28
Comment line, 2, 3
Comment (*) statement, 153
Complex values, 49-50
Component names, 7-8
Component values, 4-5
scaling, 120-21
sweeping, 122
Conductance, GMIN, 127
Controlled sources
to ‘‘insert’’ noise, 82-84
linear, 22-24
multiple-input, 27-28
polynomial, 24-25
Control statements, 153—68
Cross-modulation distortion, 103
Crossover distortion, 103
Current
gain, 34
measuring inductance versus, 100
noise, 83
‘‘open-loop current gain,”” 60
recombination, 139
source, 89
Current-controlled current source, 173
Current-controlled switch, 185-86
Current-controlled voltage source, 23, 174~
75
Curtice model, 134, 135

D

DC bias-point, 4, 6, 19, 42)
DC operation, 6-13
capacitors in DC circuits, 11-12

Index

independent sources, 89
inductors in DC circuits, 12-13
DC sensitivity, 14-18, 165
circuit example, 16-18
.SENS statement, 14, 15, 165
DC sweep, 19-32, 123, 155
.DC statement, 19, 20, 122, 154-56
graphics output, 26-27
plotted output, 22
printed output, 20-21
sweeping a source, 19-20
D (diode) device, 171-72
Decimal values, 4
Decomposition, harmonic, 113, 117
Delay, envelope, 48
Delay, plotting group, 48—49
Device currents, printed output of, 21
Device models, 118-23
.MODEL statement, 118-19
passive, 119-20
scaling component values, 120-21
sweeping component values, 122
temperature analysis, 122-23
Devices, 3
abridged summary of, 169-86
linear controlled sources, 22-24
names for, 7-8
passive, 67
types, 159-60
See also Active devices
DEV tolerances, 158, 160
Diffusion capacitance, 129
Diffusion charge in semiconductor diode,
129-30
Digital-to-analog converter, 16-18
Diode
D device, 171-72
semiconductor, 126-31, 139, 140
Diode capacitance, 128-29
Discrete Fourier transform (DFT), 110, 112
Distortion
.DISTO analysis, 103—4
intermodulation,_ 114-17
large-signal, 1067
spectral analysis techniques to calculate,
104-17
types of, 103

Index

Dynamic plant example of feedback control
analysis, 6668

E

Early, .M., 138

Early effect, 138

Early voltage, 138, 139

Ebers-Moll model, 137

.ENDS (end of subcircuit definition) state-
ment, 156, 165

.END statement, 2, 156

Envelope delay, 48

Equivalent input noise, calculating, 77, 78

Error message for isolated node, 12

Euler’s number, 50

E (voltage-controlled voltage source) device,
172

Exponential waveform, 86, 87, 89

F

Fast Fourier transform (FFT), 110, 112-14
F (current-controlled current source) device,
173
Feedback control analysis, 66-75
Bode plots, 68-72
dynamic plant example, 6668
inverse-polar plots, 72-74
Nichols plots, 74-75
Feedback theory, 29-30
Flag options, 162-63
Floating point values, 4
Forward current gain, 140
Fourier, Jean, 104
Fourier analysis, 104-7, 113, 117, 156-57
Fourier integral, 109
Fourier transform, 109-17
discrete, 110, 112
error in, 114
fast, 110, 112-14
Probe in, 109, 110-14
.FOUR statement, 105-6, 113, 156-57

195

Frequency response analysis, 4265, 66, 67
.AC statement, 44, 77, 154
Bode plots of, 4548, 63-72
group delay, plotting, 48—49
input impedance, plotting, 51-55
loop gain, plotting, 59-65
noise analysis and, 77
output impedance, plotting, 5558
print and plot output, 4445
specifying input sources, 43-44
Frequency sweep, 44

G

Gain

circuit, 34, 36, 38-39

forward, 140

loop, plotting, 59-65

small-signal, plotting, 40-41
Gallium-arsenide MESFET (GaAsFET),

134-36, 169-70

GMIN option, 127
Graphics output

Bode plots, 4548, 68-72, 74

for DC sweep, 26-27

in noise analysis, 78-81

for transient analysis, 93-96

See also Probe ‘
Graphs. See .PLOT statement
Ground node, 3
Group delay, plotting, 4849
Gummel-Poon model, 137, 138, 13943
G (voltage-controlled current source) device,

173-74

H

Harmonic distortion, 103

Harmonic (Fourier) decomposition, 104-7,
113, 117

Harmonic recomposition, 108-9

H (current-controlled voltage source) device,
174-75

High-level injection, 142

196

IC (initial transient conditions) statement,
97, 157
I (independent current source) device, 86,
175
Imaginary part of input impedance, plotting,
54
Imaginary part of output impedance, plot-
ting, 58
Impedance
input, plotting, 51-55
output, plotting, 55-58
INC (include file) statement, 157
Independent current source device, 86,
175
Independent sources, 8-9
Independent voltage source device, 86, 184—
85
Inductance versus current, measuring, 100
Inductor coupling (transformer core), 176—
77
Inductors, 7
in DC circuits, 12-13
L device, 178
models, 121
Initial conditions for simulation, setting, 96—
98
Initial transient conditions, 97, 157
Injection, high-level, 142
In-line comment (;) statement, 154
INOISE, 78
Input impedance, plotting, 51-35
imaginary part of, 54
magnitude of, 51, 52
phase angle of, 51, 52
real part of, 53
Input resistance, 34, 36
Input sources, specifying
for frequency response, 43-44
for transient response, 86-92
Integral, Fourier, 109
Intermodulation
defined, 114
distortion, 103, 114-17
Inverse-polar plots, 72-74

Index
J

Jiles-Atherton magnetics model, 148, 150
Junction field effect transistor (JFET), 131~
34, 145, 176
I device, 175-76

K

K (inductor coupling) device, 176-77
Kirchoft’s network laws, 9-11

L

LAMBDA, 132

Laplace transform, 109. See also Fourier
transform

Large-signal distortion, 1067

Large signals, 33

LC-filter, plot of sinusoidal excitation of,
95-96

LC-filter transient response, plot of, 94

Library (.LIB) files, 32

.LIB statement, 157

L (inductor) device, 178

Linear capacitor, 100

Linear controlled sources, 22-24

Linear devices,. type names, 119

Linear example of transfer function, 37-38

Linear frequency sweep, 44

Linearization, 38-39

LIST, 155, 159

Logarithmic frequency sweep, 44

Loop, voltage, 12, 13,

Loop gain, plotting, 59-65

LOT tolerances, 158, 160

M

McCalla, William J., 188

 Magnetics, nonlinear, 148-51

Index

Magnitude of input impedance, plotting, 51,
52
Magnitude of output impedance, plotting,
55-56 '
Magnitude response, plot of, 47
Bode plots of, 68-72
.MC (Monte Carlo) statement, 158-59
MESFET (MEtal Semiconductor FET), gal-
lium-arsenide, 134-36, 169-70
Meyer model, 146-48
Model parameters, 155, 169-86
Models
active device, 124-25
Curtice, 134, 135
Gummel-Poon, 137, 138, 13943
inductor, 121
Jiles-Atherton magnetics, 148, 150
Meyer, 14648
Raytheon, 134-36
resistor, 121
Schichman-Hodges MOSFET, 14445
Ward-Dutton, 14648
See also Device models
.MODEL statement, 118-19, 125, 158, 159~
60, 166
Monte Carlo analysis, 158-59
MOS field effect transistor (MOSFET), 134,
143-48
M device, 178-80
Multidimensional polynomial, 22
Multiple-input controlled sources, 27-28
Mutual coupling, coefficient of, 177
Mutual inductance, 12

N

Nagel, Laurence, 187
Names
component, 7-8
model, 118-19
Network laws, Kirchoff’s, 9-11
Network versus voltage, measuring capaci-
tance of, 100
Nichols, N.B., 74
Nichols plots, 74-75

197

Nodes
checking for isolated, 12
circuit, 3
ground, 3
initial conditions for, 96-97
of subcircuit, 31
.NODESET statement, 97-98, 160-61
Node voltages, printed output of, 21
Noise
current, 83
defined, 76
numerical, 107, 113
resistor, 183
thermal, 76-77
voltage, 83
Noise analysis, 7684, 161
graphics output, 78-81
inserting noise sources, 8§2-84
noise calculations, 7677
NOISE statement, 77-78, 161
print and plot output, 78
total noise and s/N, calculating, 81-82
NOM.LIB, 158
Nonlinear example of transfer function, 38—
39 ‘
Nonlinear magnetics, 148-51
Non-linear sources, 24-25
Notation, suffix, 4-5
Numerical noise, 107, 113
Nyquist, H., 72

o

Offset coefficient, 28

ONOISE, 78

Opamp, subcircuit definition for, 63

Open-loop gain, plotting, 5965

Open-loop “*gain margin,”’ 60

Open-loop magnitude response, plot of, 68,
69, 71

Open-loop ‘‘phase margin,”’ 60

Open-loop phase response, plot of, 70, 71

Open-loop response in inverse polar form,
73

Open-loop response in Nichols form, 75

198

Open-loop voltage gain, 61
Operating Point (/OP), 6, 92, 167
.OP statement, 6, 162
.OPTIONS statement, 98, 123, 127, 162—
63, 166
Output impedance, plotting, 55-58
imaginary part of, 58
magnitude of, 55-56
phase angle of, 56-57
real part of, 57-58
Output resistance, 34, 36

P

Parasitic resistances, 138, 139
Parseval’s theorem, 111
Passive devices, 6-7
Passive devices, models for, 119-20
Phase angle
of input impedance, plotting, 51, 52
of output impedance, plotting, 56-57
Phase distortion, 103
Phase response, plot of, 47, 4849, 68—
72
Piecewise linear waveform, 86, 88, 90
Pinch-off voltage, 131, 133
.PLOT statement, 22, 163-64
Bode plots by using, 69
for noise analysis, 78
output from AC analysis, 44-45
for transient analysis, 93
Polar plot, 72
Polynomial, multidimensional, 22
Polynomial controlled sources, 2425
Power dissipation, plot of instantaneous and
average, 95
.PRINT statement, 164
for DC sweep, 20--21
for noise analysis, 78
output from AC analysis, 4445
for transient analysis, 93
Probe
Bode plots by using, 69
calculation of group delay, 49
Fourier transform in, 109, 110-14

Index

intermodulation distortion in, 115
inverse-polar plots, 72-74
to plot small-signal gain, 40
with transient analysis, 93-96
treatment of complex values in, 50
PROBE.DAT, 26
.PROBE statement, 26, 93, 16465
with AC analysis, 45-48
for Fourier decomposition, 106
Pulse waveform, 86, 87, 90

Q

Q (bipolar transistor) device, 181-82

R

Raytheon model, 134-36
Real component of complex values, 49-50
Real part of input impedance, plotting, 53
Real part of output impedance, plotting, 57—
58
Recombination current, 139
Recomposition, harmonic, 108-9
Regenerative feedback, circuit with, 99
Resistance
input and output, 34, 36
parasitic, 138, 139
Resistor, 6, 182-83
models, 121
noise, 183
R device, 182-83 !
temperature analysis, 122-23 !
thermal noise, 76-77
as voltage-controlled current source,
24
Resistor bridge circuit, 9-11
Reverse-bias capacitance, 131
Reverse breakdown, 127-28
Reverse-Early voltage, 138
Reverse recovery current, plot of, 130-31
Reverse-voltage capacitance, 128-29
R (resistor) device, 182-83

Index

S

Scaling component values, 120-21
Schichman-Hodges MOSFET model, 144
45
Schmitt trigger, 99
Schottky-barrier diode, 126
Schottky-batrier gate FET, 134
Self inductance, 12
Semiconductor devices
models for, 119-20
type names, 119
Semiconductor diode, 126-31, 139, 140
Sensitivity analysis, DC, 14-18, 165
.SENS statement, 14, 15, 165
Shockley equation, 124-25, 126, 127, 139
Signals
large, 33
modulating, 101-2
small-signal DC analysis, 33-34
Signal to noise (S/N), calculating, 81-82
Silicon diffused-junction diode, 126
Sine wave, Fourier transform of, 112
Single-frequency FM waveform, 86, 88, 91
Sinusoidal excitation of LC-filter, plot of,
95-96
Sinusoidal waveform, 86, 89, 91-92
Small-signal DC analysis, 33-34
Small-signal frequency response. See Fre-
quency response analysis
Small-signal gain, plotting, 4041
Source(s), 155
controlled
linear, 22-24
multiple-input, 27-28
polynomial, 24-25
independent, 8-9
input, specifying, 43-44
noise, inserting, 82-84
sweeping a, 19-20
waveform, unusual, 101-2
Spectral analysis
Fourier analysis, 104-7, 113, 117, 156~
57
Fourier transforms, 109-17
harmonic recomposition, 108-9

199

SPICE2, xv, xvi, xvii
MOS modeling techniques of, 14344
SPICE2: A Computer Program to Simulate
Semiconductor Circuits (Nagel), 187
SPICE3, xvi
Spike, discrete Fourier transform, 112, 113
Square law device, 131, 14546
Static problems, transient solutions for, 99—
100
Subcircuits, 31-32
.ENDS statement, 156, 165
.SUBCKT statement, 156, 165-66
X (subcircuit call) device, 186
Suffix notation, 4-5
S (voltage-controlled switch) device, 183—
84
Sweep, DC. See DC sweep
Sweep, types of, 44, 155
Sweeping component values, 122
Sweeping temperature, 123
Switch
current-controlled, 185-86
voltage-controlled, 183-84

T

Taylor series, 39
Temperature, 156
analysis, 122-23
sweeping, 123
.TEMP statement, 122, 123, 166
.TF statement, 35, 36, 166-67
Thermal noise, 76-77
Time, simulating, 85-86
Time-domain response. See Transient re-
sponse
Time-stepped solutions, problems of, 98-99
Title line, 2
TNOM option, 166, 171, 183
Total noise, calculating, 81-82
Total output noise, calculating, 77-78
Transcondance, 132
Transconductance, 23, 34, 145
Transfer function, 33-41
analysis, 35-37
circuit gain, 34, 36, 38-39

200

Transfer function (cont.)
input and output resistance, 34, 36
small-signal DC analysis, 33-34
small-signal gain, plotting, 4041
.TF statement, 35, 36, 166-67
Transformer core, 176-77
Transient response, 42, 85-102, 167
graphics output and calculations, 93—
96
initial conditions for, 157
input sources, specifying, 86-92
print and plot output, 93
problems of time-stepped solutions, 98—
99
setting initial conditions, 96-98
simulating time, 85-86
transient solutions for static problems, 99—
100
.TRAN statement, 92-93, 97, 167
unusual waveform sources, 101-2
Transistor
bipolar, 181-82
bipolar junction, 13743
junction field effect, 131-34, 145, 175~
76
MOS field effect, 134, 14348, 178-80

.. Transit time, 129, 130

‘Transresistance, 23, 34

¥ .TRAN statement, 92-93, 97, 167
T (transmission line) device, 184
Two-terminal devices, 3

U

UIC (Use Initial Conditions), 97, 167

\'

Values, 3
complex, 49-50
component, 4-5
scaling, 120-21
sweeping, 122
V (independent voltage source) device, 86,
184-85
VNTOL, 98, 99

Index

Voltage
Early, 138, 139
late, 138
measuring capacitance of network versus,
100
noise, 83
‘‘open-loop voltage gain,” 61
pinch-off, 131, 133
self inductance and mutual inductance,
12
Voltage-controlled components, 189-91
Voltage-controlled current sources, 23, 24,
173-74
Voltage-controlled switch, 183-84
Voltage gain, 34
open-loop, 61
Voltage loop, 12, 13
Voltage multiplier, 28, 29
Voltage source, 8
current-controlled, 23, 174-75
voltage-controlled, 23, 172

W

Ward-Dutton model, 14648

Waveforms
harmonic recomposition and, 108-9
sources, unusual, 101-2
types of, 86-92

W (current-controlled switch) device, 185—

86
.WIDTH statement, 168

X

X (subcircuit call) device, 186

Y

YMAX, 159

yA

Zener diodes, 127

AGuide to Cireuit Simulation
& Analysis Using PSpice’
~ Paul W.Tuinenga

Designed as a reference on PSpice® that can be used as a supplement in
Electronic Circuit Design courses, this book fecuses on the design and analysis
of analog circuits using PSpice. PSpice is a SPICE derived simulater created
by MicroSim Corporation. The PSpice software program is available for use
on IBM PCs® or compatibles, or the Macintosh [1® persenal computer. The
auther clearly explains hew to use the features of PSpice to solve common
electrical and electrenic preblems. The book alse covers the extensions of use
in nen-electrical areas. Topic coverage includes: DC operation ® transfer
functions ® frequency response ® and noise analysis,

Readers will find a thereugh description of PSpice and pertinent examples
that demenstrate what the simulater can and cannet de—allewing readers to
apply PSpice to their ewn werk. The book then adopts a “tuterial” appreach
threughout se immediate implementation of PSpice can begin.

Software allows for hands-on practice

The PSpice student version software is available from Prentice Hall in both
IBM PC and Macintesh 11 readable formats. The student version of the
PSpiee program can simulate circuits of up te ten transistors in either the
IBM PC or Macintesh 1l compatible formats. The program simulates a circuit
design with parameters inserted by the user.

In additien the book features many graduated examples and numerous
illustrations that clarify and reinforce the benefits of PSpice.

PRENTICE HALL, Englewood Cliffs, NJ 07632

ISBN B-13-434uE7-N

SPICE

AGuide to Circuit Simulation
& Analysis Using PSpice

Paul W. Tuinenga

Designed as a reference on PSpice® that can be used as a supplement in
Electronic Circuit Design courses, this book focuses on the design and analysis
of analog circuits using PSpice. PSpice is a SPICE derived simulator created
by MicroSim Corporation. The PSpice software program is available for use
on IBM PCs® or compatibles, or the Macintosh 11 ® personal computer. The
author clearly explains how to use the features of PSpice to solve common
electrical and electronic problems. The book also covers the extensions of use
in non-¢lectrical areas. Topic coverage includes: DC operation ® transfer
functions ® frequency response ® and noise analysis.

Readers will find a thorough description of PSpice and pertinent examples
that demonstrate what the simulator can and cannot do—allowing readers to
apply PSpice to their own work. The book then adopts a “tutorial” approach
throughout so immediate implementation of PSpice can begin.

Software allows for hands-on practice

The PSpice student version software is available from Prentice Hall in both
IBM PC and Macintosh 11 readable formats. The student version of the
PSpice program can simulate circuits of up to ten transistors in either the
IBM PC or Macintosh II compatible formats. The program simulates a circuit

design with parameters inserted by the user.

In addition the book features many graduated examples and numerous
illustrations that clarify and reinforce the benefits of PSpice.

PRENTICE HALL, Englewood Cliffs, NJ 07632

ISBN 0-13-434k07-0

@ | :
Tuinengd RIS EREIE
o ol u(5) ul(?) # v(@) :

Paul W.

